Learning Visual Words for Weakly-Supervised Semantic Segmentation

Related tags

Deep Learningvwe
Overview

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation

Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Supervised Semantic Segmentation, a work on generating better CAM for Weakly-Supervised Semantic Segmentation.

Abstract

Current weakly-supervised semantic segmentation (WSSS) methods with image-level labels mainly adopt class activation maps (CAM) to generate the initial pseudo labels. However, CAM usually only identifies the most discriminative object extents, which is attributed to the fact that the network doesn't need to discover the integral object to recognize image-level labels. In this work, to tackle this problem, we proposed to simultaneously learn the image-level labels and local visual word labels. Specifically, in each forward propagation, the feature maps of the input image will be encoded to visual words with a learnable codebook. By enforcing the network to classify the encoded fine-grained visual words, the generated CAM could cover more semantic regions. Besides, we also proposed a hybrid spatial pyramid pooling module that could preserve local maximum and global average values of feature maps, so that more object details and less background were considered. Based on the proposed methods, we conducted experiments on the PASCAL VOC 2012 dataset. Our proposed method achieved 67.2% mIoU on the val set and 67.3% mIoU on the test set, which outperformed recent state-of-the-art methods.

Start

Create and activate conda environment

conda create --name py36 python=3.6
conda activate py36
pip install -r requirments.txt

Clone this repo

git clone https://github.com/rulixiang/vwe.git
cd vwe

train & infer & evaluate

# train network
python train_cam.py --gpu 0,1 --configs/voc.yaml
# infer cam
python infer_cam.py --gpu 0,1 --configs/voc.yaml
# evaluate cam
python eval_cam.py

Comparasion of the generated CAM

Evaulation on the PASCAL VOC 2012 Dataset

bkg aero bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIOU
val 89.2 75.7 31.1 82.4 66.1 61.7 87.5 77.8 82.8 32.2 81.4 34.1 77.4 77.6 76.7 75.0 51.2 78.1 42.4 71.4 59.6 67.2
test 90.3 76.9 31.6 89.1 54.8 57.8 86.4 77.8 81.8 32.2 76.0 39.3 80.3 80.3 81.8 74.3 44.5 80.1 54.5 63.0 60.4 67.3

Citation

@inproceedings{
  ru2021learning,
  title={Learning Visual Words for Weakly-Supervised Semantic Segmentation},
  author={Lixiang Ru and Bo Du and Chen Wu},
  booktitle={International Joint Conference on Artificial Intelligence},
  year={2021},
}

Acknowledgement

This repo is heavily borrowed from IRNet. Thanks for their brilliant work!

Owner
Lixiang Ru
@rulixiang
Lixiang Ru
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022