i-RevNet Pytorch Code

Overview

i-RevNet: Deep Invertible Networks

Pytorch implementation of i-RevNets.

i-RevNets define a family of fully invertible deep networks, built from a succession of homeomorphic layers.

Reference: Jörn-Henrik Jacobsen, Arnold Smeulders, Edouard Oyallon. i-RevNet: Deep Invertible Networks. International Conference on Learning Representations (ICLR), 2018. (https://iclr.cc/)

Algorithm

The i-RevNet and its dual. The inverse can be obtained from the forward model with minimal adaption and is an i-RevNet as well. Read the paper for theoretical background and detailed analysis of the trained models.

Pytorch i-RevNet Usage

Requirements: Python 3, Numpy, Pytorch, Torchvision

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

We provide an Imagenet pre-trained model: Download
Save it to this folder.

Train small i-RevNet on Cifar-10, takes about 5 hours and yields an accuracy of ~94.5%

$ python CIFAR_main.py --nBlocks 18 18 18 --nStrides 1 2 2 --nChannels 16 64 256

Train bijective i-RevNet on Imagenet, takes 7-10 days and yields top-1 accuracy of ~74%

$ python ILSVRC_main.py --data /path/to/ILSVRC2012/ --nBlocks 6 16 72 6 --nStrides 2 2 2 2 --nChannels 24 96 384 1536 --init_ds 2

Evaluate pre-trained model on Imagenet validation set, yields 74.018% top-1 accuracy

$ bash scripts/evaluate_ilsvrc-2012.sh

Invert output of last layer on Imagenet validation set and save example images

$ bash scripts/invert_ilsvrc-2012.sh

Imagenet ILSVRC-2012 Results

i-RevNets perform on par with baseline RevNet and ResNet.

Model: ResNet RevNet i-RevNet (a) i-RevNet (b)
Val Top-1 Error: 24.7 25.2 24.7 26.0

Reconstructions from ILSVRC-2012 validation set. Top row original image, bottom row reconstruction from final representation.

Inverse

Contribute

Contributions are very welcome.

Cite

@inproceedings{
jacobsen2018irevnet,
title={i-RevNet: Deep Invertible Networks},
author={Jörn-Henrik Jacobsen and Arnold W.M. Smeulders and Edouard Oyallon},
booktitle={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=HJsjkMb0Z},
}
Owner
Jörn Jacobsen
j.jacobsen [at] vectorinstitute.ai
Jörn Jacobsen
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Simple command line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network)

Deep Daze mist over green hills shattered plates on the grass cosmic love and attention a time traveler in the crowd life during the plague meditative

Phil Wang 4.4k Jan 03, 2023
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
The Curious Layperson: Fine-Grained Image Recognition without Expert Labels (BMVC 2021)

The Curious Layperson: Fine-Grained Image Recognition without Expert Labels Subhabrata Choudhury, Iro Laina, Christian Rupprecht, Andrea Vedaldi Code

Subhabrata Choudhury 18 Dec 27, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

TailCalibX : Feature Generation for Long-tail Classification by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi [arXiv] [

Rahul Vigneswaran 34 Jan 02, 2023
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021