i-RevNet Pytorch Code

Overview

i-RevNet: Deep Invertible Networks

Pytorch implementation of i-RevNets.

i-RevNets define a family of fully invertible deep networks, built from a succession of homeomorphic layers.

Reference: Jörn-Henrik Jacobsen, Arnold Smeulders, Edouard Oyallon. i-RevNet: Deep Invertible Networks. International Conference on Learning Representations (ICLR), 2018. (https://iclr.cc/)

Algorithm

The i-RevNet and its dual. The inverse can be obtained from the forward model with minimal adaption and is an i-RevNet as well. Read the paper for theoretical background and detailed analysis of the trained models.

Pytorch i-RevNet Usage

Requirements: Python 3, Numpy, Pytorch, Torchvision

Download the ImageNet dataset and move validation images to labeled subfolders. To do this, you can use the following script: https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

We provide an Imagenet pre-trained model: Download
Save it to this folder.

Train small i-RevNet on Cifar-10, takes about 5 hours and yields an accuracy of ~94.5%

$ python CIFAR_main.py --nBlocks 18 18 18 --nStrides 1 2 2 --nChannels 16 64 256

Train bijective i-RevNet on Imagenet, takes 7-10 days and yields top-1 accuracy of ~74%

$ python ILSVRC_main.py --data /path/to/ILSVRC2012/ --nBlocks 6 16 72 6 --nStrides 2 2 2 2 --nChannels 24 96 384 1536 --init_ds 2

Evaluate pre-trained model on Imagenet validation set, yields 74.018% top-1 accuracy

$ bash scripts/evaluate_ilsvrc-2012.sh

Invert output of last layer on Imagenet validation set and save example images

$ bash scripts/invert_ilsvrc-2012.sh

Imagenet ILSVRC-2012 Results

i-RevNets perform on par with baseline RevNet and ResNet.

Model: ResNet RevNet i-RevNet (a) i-RevNet (b)
Val Top-1 Error: 24.7 25.2 24.7 26.0

Reconstructions from ILSVRC-2012 validation set. Top row original image, bottom row reconstruction from final representation.

Inverse

Contribute

Contributions are very welcome.

Cite

@inproceedings{
jacobsen2018irevnet,
title={i-RevNet: Deep Invertible Networks},
author={Jörn-Henrik Jacobsen and Arnold W.M. Smeulders and Edouard Oyallon},
booktitle={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=HJsjkMb0Z},
}
Owner
Jörn Jacobsen
j.jacobsen [at] vectorinstitute.ai
Jörn Jacobsen
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
ThunderSVM: A Fast SVM Library on GPUs and CPUs

What's new We have recently released ThunderGBM, a fast GBDT and Random Forest library on GPUs. add scikit-learn interface, see here Overview The miss

Xtra Computing Group 1.4k Dec 22, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
LBK 35 Dec 26, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022