Instant neural graphics primitives: lightning fast NeRF and more

Overview

Instant Neural Graphics Primitives

Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a factory robot? Of course you have!

Here you will find an implementation of four neural graphics primitives, being neural radiance fields (NeRF), signed distance functions (SDFs), neural images, and neural volumes. In each case, we train and render a MLP with multiresolution hash input encoding using the tiny-cuda-nn framework.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller
arXiv [cs.GR], Jan 2022
[ Project page ] [ Paper ] [ Video ]

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

Requirements

  • Both Windows and Linux are supported.
  • An NVIDIA GPU; tensor cores increase performance when available. All shown results come from an RTX 3090.
  • CUDA v10.2 or higher, a C++14 capable compiler, and CMake v3.19 or higher.
  • (optional) Python 3.7 or higher for interactive bindings. Also, run pip install -r requirements.txt.
    • On some machines, pyexr refuses to install via pip. This can be resolved by installing OpenEXR from here.
  • (optional) OptiX 7.3 or higher for faster mesh SDF training. Set the environment variable OptiX_INSTALL_DIR to the installation directory if it is not discovered automatically.

If you are using Linux, install the following packages

sudo apt-get install build-essential git python3-dev python3-pip libopenexr-dev libxi-dev \
                     libglfw3-dev libglew-dev libomp-dev libxinerama-dev libxcursor-dev

We also recommend installing CUDA and OptiX in /usr/local/ and adding the CUDA installation to your PATH. For example, if you have CUDA 11.4, add the following to your ~/.bashrc

export PATH="/usr/local/cuda-11.4/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH"

Compilation (Windows & Linux)

Begin by cloning this repository and all its submodules using the following command:

$ git clone --recursive https://github.com/nvlabs/instant-ngp
$ cd instant-ngp

Then, use CMake to build the project:

instant-ngp$ cmake . -B build
instant-ngp$ cmake --build build --config RelWithDebInfo -j 16

If the build succeeded, you can now run the code via the build/testbed executable or the scripts/run.py script described below.

If automatic GPU architecture detection fails, (as can happen if you have multiple GPUs installed), set the TCNN_CUDA_ARCHITECTURES enivonment variable for the GPU you would like to use. Set it to 86 for RTX 3000 cards, 80 for A100 cards, and 75 for RTX 2000 cards.

Interactive training and rendering

This codebase comes with an interactive testbed that includes many features beyond our academic publication:

  • Additional training features, such as extrinsics and intrinsics optimization.
  • Marching cubes for NeRF->Mesh and SDF->Mesh conversion.
  • A spline-based camera path editor to create videos.
  • Debug visualizations of the activations of every neuron input and output.
  • And many more task-specific settings.
  • See also our one minute demonstration video of the tool.

NeRF fox

One test scene is provided in this repository, using a small number of frames from a casually captured phone video:

instant-ngp$ ./build/testbed --scene data/nerf/fox

Alternatively, download any NeRF-compatible scene (e.g. from the NeRF authors' drive). Now you can run:

instant-ngp$ ./build/testbed --scene data/nerf_synthetic/lego

For more information about preparing datasets for use with our NeRF implementation, please see this document.

SDF armadillo

instant-ngp$ ./build/testbed --scene data/sdf/armadillo.obj

Image of Einstein

instant-ngp$ ./build/testbed --scene data/image/albert.exr

To reproduce the gigapixel results, download, for example, the Tokyo image and convert it to .bin using the scripts/image2bin.py script. This custom format improves compatibility and loading speed when resolution is high. Now you can run:

instant-ngp$ ./build/testbed --scene data/image/tokyo.bin

Volume Renderer

Download the nanovdb volume for the Disney cloud, which is derived from here (CC BY-SA 3.0).

instant-ngp$ ./build/testbed --mode volume --scene data/volume/wdas_cloud_quarter.nvdb

Python bindings

To conduct controlled experiments in an automated fashion, all features from the interactive testbed (and more!) have Python bindings that can be easily instrumented. For an example of how the ./build/testbed application can be implemented and extended from within Python, see ./scripts/run.py, which supports a superset of the command line arguments that ./build/testbed does.

Happy hacking!

Thanks

Many thanks to Jonathan Tremblay and Andrew Tao for testing early versions of this codebase and to Arman Toornias and Saurabh Jain for the factory robot dataset.

This project makes use of a number of awesome open source libraries, including:

  • tiny-cuda-nn for fast CUDA MLP networks
  • tinyexr for EXR format support
  • tinyobjloader for OBJ format support
  • stb_image for PNG and JPEG support
  • Dear ImGui an excellent immediate mode GUI library
  • Eigen a C++ template library for linear algebra
  • pybind11 for seamless C++ / Python interop
  • and others! See the dependencies folder.

Many thanks to the authors of these brilliant projects!

License

Copyright © 2022, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License-NC. Click here to view a copy of this license.

A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
AnimationKit: AI Upscaling & Interpolation using Real-ESRGAN+RIFE

ALPHA 2.5: Frostbite Revival (Released 12/23/21) Changelog: [ UI ] Chained design. All steps link to one another! Use the master override toggles to s

87 Nov 16, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach

Performance Analysis of Multi-user NOMA Wireless-Powered mMTC Networks: A Stochastic Geometry Approach Thanh Luan Nguyen, Tri Nhu Do, Georges Kaddoum

Thanh Luan Nguyen 2 Oct 10, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022