Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Overview

Pytorch Implementation of Improv RNN

Overview

This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Magenta team. The model is able to generate melodies conditioned on a given chord progression.
The specific model implemented in this repository is the Chord Pitches Improv model which encodes chords as the concatenation of the following length-12 vectors:

  • a one-hot encoding of the chord root pitch class, e.g. [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] for a D major (or minor, etc.) chord
  • a binary vector indicating presence or absence of each pitch class, e.g. [1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0] for a C7#9 chord
  • a one-hot encoding of the chord bass pitch class, which is usually the same as the chord root pitch class except in the case of "slash chords" like C/E

You can either use a pre-trained checkpoint of the model or train your own using the steps below.

Installation

Install Required Libraries

pip install -r requirements.txt

Generate a Melody Given Backing Chords

A pretrained checkpoint of the model can be found in the "checkpoints" folder. The checkpoint has been trained for 1000 epochs on the OpenEWLD dataset.

python 003_generate_melody.py --backing_chords "C G Am F C G F C" --output out.mid

This will generate a melody starting with a middle C over the chord progression C G Am F C G F C, where each chord lasts one bar. You can modify the backing chords as you like using the backing_chords parameter. You can define where the generated midi file should be saved with the output parameter.

An example of the generated RNN features is visualized here:

Example Generated Note Events

Train Your Own Model

Download OpenEWLD Dataset

To train the model, the OpenEWLD dataset is used. OpenEWLD is a subset of the Wikifonia Leadsheet Dataset reduced to only copyright free songs. A lead sheet is a musical score that contains a notation of the melody and the underlying chord progression of a song.
The song examples are in the compressed musicxml (*.MXL) format which can be parsed in to sequences of note events using the note-seq library.

Dataset Preparation

Extract features from musicxml files and store them in a h5 file.

python 001_create_dataset.py --input C:/Datasets/OpenEWLD/dataset

Training

Track metrics using Tensorboard

python 002_train.py --num_epochs 1000

Track metrics using Tensorboard

tensorboard --logdir ./logs/

The curves of the loss and accuracy over the training epochs are shown in tensorboard:

Tensorboard

Owner
Sebastian Murgul
CEO and Research Scientist at Klangio. Working on Automatic Music Transcription.
Sebastian Murgul
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: MΓΌller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
πŸ§‘β€πŸ”¬ verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
a minimal terminal with python πŸ˜ŽπŸ˜‰

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022