Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Overview

Pytorch Implementation of Improv RNN

Overview

This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Magenta team. The model is able to generate melodies conditioned on a given chord progression.
The specific model implemented in this repository is the Chord Pitches Improv model which encodes chords as the concatenation of the following length-12 vectors:

  • a one-hot encoding of the chord root pitch class, e.g. [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] for a D major (or minor, etc.) chord
  • a binary vector indicating presence or absence of each pitch class, e.g. [1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0] for a C7#9 chord
  • a one-hot encoding of the chord bass pitch class, which is usually the same as the chord root pitch class except in the case of "slash chords" like C/E

You can either use a pre-trained checkpoint of the model or train your own using the steps below.

Installation

Install Required Libraries

pip install -r requirements.txt

Generate a Melody Given Backing Chords

A pretrained checkpoint of the model can be found in the "checkpoints" folder. The checkpoint has been trained for 1000 epochs on the OpenEWLD dataset.

python 003_generate_melody.py --backing_chords "C G Am F C G F C" --output out.mid

This will generate a melody starting with a middle C over the chord progression C G Am F C G F C, where each chord lasts one bar. You can modify the backing chords as you like using the backing_chords parameter. You can define where the generated midi file should be saved with the output parameter.

An example of the generated RNN features is visualized here:

Example Generated Note Events

Train Your Own Model

Download OpenEWLD Dataset

To train the model, the OpenEWLD dataset is used. OpenEWLD is a subset of the Wikifonia Leadsheet Dataset reduced to only copyright free songs. A lead sheet is a musical score that contains a notation of the melody and the underlying chord progression of a song.
The song examples are in the compressed musicxml (*.MXL) format which can be parsed in to sequences of note events using the note-seq library.

Dataset Preparation

Extract features from musicxml files and store them in a h5 file.

python 001_create_dataset.py --input C:/Datasets/OpenEWLD/dataset

Training

Track metrics using Tensorboard

python 002_train.py --num_epochs 1000

Track metrics using Tensorboard

tensorboard --logdir ./logs/

The curves of the loss and accuracy over the training epochs are shown in tensorboard:

Tensorboard

Owner
Sebastian Murgul
CEO and Research Scientist at Klangio. Working on Automatic Music Transcription.
Sebastian Murgul
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models arXiv | BibTeX High-Resolution Image Synthesis with Latent Diffusion Models Robin Rombach*, Andreas Blattmann*, Dominik Lorenz

CompVis Heidelberg 5.6k Dec 30, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023