Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Overview

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild

Akash Sengupta, Ignas Budvytis, Roberto Cipolla
ICCV 2021
[paper+supplementary][poster][results video]

This is the official code repository of the above paper, which takes a probabilistic approach to 3D human shape and pose estimation and predicts multiple plausible 3D reconstruction samples given an input image.

teaser

This repository contains inference, training (TODO) and evaluation (TODO) code. A few weaknesses of this approach, and future research directions, are listed below (TODO). If you find this code useful in your research, please cite the following publication:

@InProceedings{sengupta2021hierprobhuman,
               author = {Sengupta, Akash and Budvytis, Ignas and Cipolla, Roberto},
               title = {{Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild}},
               booktitle = {International Conference on Computer Vision},
               month = {October},
               year = {2021}                         
}

Installation

Requirements

  • Linux or macOS
  • Python ≥ 3.6

Instructions

We recommend using a virtual environment to install relevant dependencies:

python3 -m venv HierProbHuman
source HierProbHuman/bin/activate

Install torch and torchvision (the code has been tested with v1.6.0 of torch), as well as other dependencies:

pip install torch==1.6.0 torchvision==0.7.0
pip install -r requirements.txt

Finally, install pytorch3d, which we use for data generation during training and visualisation during inference. To do so, you will need to first install the CUB library following the instructions here. Then you may install pytorch3d - note that the code has been tested with v0.3.0 of pytorch3d, and we recommend installing this version using:

pip install "git+https://github.com/facebookresearch/[email protected]"

Model files

You will need to download the SMPL model. The neutral model is required for training and running the demo code. If you want to evaluate the model on datasets with gendered SMPL labels (such as 3DPW and SSP-3D), the male and female models are available here. You will need to convert the SMPL model files to be compatible with python3 by removing any chumpy objects. To do so, please follow the instructions here.

Download pre-trained model checkpoints for our 3D Shape/Pose network, as well as for 2D Pose HRNet-W48 from here.

Place the SMPL model files and network checkpoints in the model_files directory, which should have the following structure. If the files are placed elsewhere, you will need to update configs/paths.py accordingly.

HierarchicalProbabilistic3DHuman
├── model_files                                  # Folder with model files
│   ├── smpl
│   │   ├── SMPL_NEUTRAL.pkl                     # Gender-neutral SMPL model
│   │   ├── SMPL_MALE.pkl                        # Male SMPL model
│   │   ├── SMPL_FEMALE.pkl                      # Female SMPL model
│   ├── poseMF_shapeGaussian_net_weights.tar     # Pose/Shape distribution predictor checkpoint
│   ├── pose_hrnet_w48_384x288.pth               # Pose2D HRNet checkpoint
│   ├── cocoplus_regressor.npy                   # Cocoplus joints regressor
│   ├── J_regressor_h36m.npy                     # Human3.6M joints regressor
│   ├── J_regressor_extra.npy                    # Extra joints regressor
│   └── UV_Processed.mat                         # DensePose UV coordinates for SMPL mesh             
└── ...

Inference

run_predict.py is used to run inference on a given folder of input images. For example, to run inference on the demo folder, do:

python run_predict.py --image_dir ./demo/ --save_dir ./output/ --visualise_samples --visualise_uncropped

This will first detect human bounding boxes in the input images using Mask-RCNN. If your input images are already cropped and centred around the subject of interest, you may skip this step using --cropped_images as an option. The 3D Shape/Pose network is somewhat sensitive to cropping and centering - this is a good place to start troubleshooting in case of poor results.

Inference can be slow due to the rejection sampling procedure used to estimate per-vertex 3D uncertainty. If you are not interested in per-vertex uncertainty, you may modify predict/predict_poseMF_shapeGaussian_net.py by commenting out code related to sampling, and use a plain texture to render meshes for visualisation (this will be cleaned up and added as an option to in the run_predict.py future).

TODO

  • Training Code
  • Evaluation Code for 3DPW and SSP-3D
  • Gendered pre-trained models for improved shape estimation
  • Weaknesses and future research

Acknowledgments

Code was adapted from/influenced by the following repos - thanks to the authors!

Owner
Akash Sengupta
Akash Sengupta
Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

youceF 1 Nov 12, 2021
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Code for paper "Vocabulary Learning via Optimal Transport for Neural Machine Translation"

**Codebase and data are uploaded in progress. ** VOLT(-py) is a vocabulary learning codebase that allows researchers and developers to automaticaly ge

416 Jan 09, 2023
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Angle data is a simple data type.

angledat Angle data is a simple data type. Installing + using Put angledat.py in the main dir of your project. Import it and use. Comments Comments st

1 Jan 05, 2022