Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Related tags

Deep LearningDisAlign
Overview

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

[Paper][Code]

We implement the classification, object detection and instance segmentation tasks based on our cvpods. The users should install cvpods first and run the experiments in this repo.

Changelog

  • 4.23.2021 Update the DisAlign on LVIS v0.5(Mask R-CNN + Res50)
  • 4.12.2021 Update the README

0. How to Use

  • Step-1: Install the latest cvpods.
  • Step-2: cd cvpods
  • Step-3: Prepare dataset for different tasks.
  • Step-4: git clone https://github.com/Megvii-BaseDetection/DisAlign playground_disalign
  • Step-5: Enter one folder and run pods_train --num-gpus 8
  • Step-6: Use pods_test --num-gpus 8 to evaluate the last the checkpoint

1. Image Classification

We support the the following three datasets:

  • ImageNet-LT Dataset
  • iNaturalist-2018 Dataset
  • Place-LT Dataset

We refer the user to CLS_README for more details.

2. Object Detection/Instance Segmentation

We support the two versions of the LVIS dataset:

  • LVIS v0.5
  • LVIS v1.0

Highlight

  1. To speedup the evaluation on LVIS dataset, we provide the C++ optimized evaluation api by modifying the coco_eval(C++) in cvpods.
  • The C++ version lvis_eval API will save ~30% time when calculating the mAP.
  1. We provide support for the metric of AP_fixed and AP_pool proposed in large-vocab-devil
  2. We will support more recent works on long-tail detection in this project(e.g. EQLv2, CenterNet2, etc.) in the future.

We refer the user to DET_README for more details.

3. Semantic Segmentation

We adopt the mmsegmentation as the codebase for runing all experiments of DisAlign. Currently, the user should use DisAlign_Seg for the semantic segmentation experiments. We will add the support for these experiments in cvpods in the future.

Acknowledgement

Thanks for the following projects:

Citing DisAlign

If you are using the DisAlign in your research or with to refer to the baseline results publised in this repo, please use the following BibTex entry.

@inproceedings{zhang2021disalign,
  title={Distribution Alignment: A Unified Framework for Long-tail Visual Recognition.},
  author={Zhang, Songyang and Li, Zeming and Yan, Shipeng and He, Xuming and Sun, Jian},
  booktitle={CVPR},
  year={2021}
}

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Comments
  • scale in cosine classifier

    scale in cosine classifier

    Hi, thanks for your great work! I notice you use the cosine classifier in many experiments and it can get a better baseline. The formula is as follows

    image

    I am wondering the value of s?

    opened by L1aoXingyu 5
  •  Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Hello. Thank you for your project! I'm testing your code on my custom dataset. My task is classification. I have a question about your code implementation.

    https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L56-L62

    From my understanding, in stage 2, remove the linear layer used in stage 1 and add DisAlign Linear Layer. And freeze all parts except for logit_scale, logit_bias, and confidence_layer. At this time, the weight and bias of DisAlignLinear are also frozen. (self.weight, self.bias) Is my understanding correct?

    If so, are the weight and bias of DisAlignLinearLayer fixed after the initialization? (The weight and bias of the linear layer in stage 1 are not copied either)

    If my understanding is correct, why is the weight of DisAlignLinear also frozen?

    I will wait for your reply. thanks!

    opened by jeongHwarr 4
  • Where is the DisAlignLinear module?

    Where is the DisAlignLinear module?

    Hello. Thank you for your impressive project!

    I want to apply DisAlign to classification. However, an error occurs in the import part. https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L7 I coudn't find the DisAlignLinear in cvpods.layers. and there also isn't exist at https://github.com/Megvii-BaseDetection/cvpods/tree/master/cvpods/layers How can I solve this problem?

    Thank you!

    opened by jeongHwarr 4
  • Can someone kindly share their codes of Classification task on ImageNet_LT?

    Can someone kindly share their codes of Classification task on ImageNet_LT?

    I tried to train the proposed method on ImageNet_LT, but I can only get an average testing rate about 49%, which is far from the rate described in the paper (52.9). Some of the details regarding my implementations are given as follows: (1) The feature extractor is ResNexT-50 and the head classifier is a linear classifier. The testing accuracy in Stage-One is 43.9%, which is OK.

    (2) The testing accuracy of adopting cRT method in Stage-Two is 49.6%, which is identical to one reported in other papers. (3) When fine-tuning the model in Stage-2, both the feature-extractor and head classifier are frozen, and a DisAliLinear model (which is implemented in CVPODs) is retrained. The testing accuracy can only reach 48.8%, which is far away from the one reported in your paper.

    opened by smallcube 4
  • The code for semantic segmentation is missing

    The code for semantic segmentation is missing

    Hi, thank you for the nice work, but the code for semantic segmentation is missing and the URL for it in the README could not be opened. Could you please fix this issue?

    opened by curiosity654 3
  • About the reference Distribution p_r in Eq. (10)

    About the reference Distribution p_r in Eq. (10)

    Hi, Thank you for providing your code. Here I was wondering the Equation (10) in your paper (The definition of p_r), which seems not to be a distribution. Since every x_i can only have one label, the reference distribution p_r(y| x_i) will be the distribution like (0, 0, 0,...,w_c, 0, 0,...,0). And the sum of this distribution is w_c, but not 1.

    Could you help me understand this equation? Thanks in advance.

    opened by Kevinz-code 3
  • import error

    import error

    Hi, thanks for the great work. Maybe I missed it, but it seems that the code for this project has been incorporated into cvpods. I couldn't launch any experiments due to ImportErrors like: from cvpods.layers import DisAlignLinear ImportError: cannot import name 'DisAlignLinear' from 'cvpods.layers' Also, I didn't find the corresponding functions in cvpods.

    Any help will be appreciated. Thanks.

    opened by YUE-FAN 2
  • about the confidence score σ(x)

    about the confidence score σ(x)

    In the paper, the σ(x) is implemented as a linear layer followed by a non-linear activation function (e.g., sigmoid function) for all input x. How to understand the input x?the matrix of raw iamge, or the extracted features, even or cls_score? Thank you!

    opened by lzed2399 2
  • exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    Dear author, I have some questions about the code and paper:

    1. exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground Why "exp_reweight" is multiplied by the coefficient "num_foreground"? It is not mentioned in the paper.
    2. Is "K" in the empirical class frequencies r = [r1, · · · , rK] on the training set in the paper the same as the class number C of the training set?
    opened by Liu-wanbing 2
  • The DisAlign_Seg page can't open

    The DisAlign_Seg page can't open

    opened by Kittywyk 1
  • Do you use validation dataset?

    Do you use validation dataset?

    https://github.com/Megvii-BaseDetection/DisAlign/blob/main/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/config.py#L31

    It seems that you only use test dataset? What is the reason for that?

    opened by qianlanwyd 1
  • How can I test and augtest the trained semseg DisAlign model?

    How can I test and augtest the trained semseg DisAlign model?

    opened by jh151170 0
  • the code question in semantic_seg

    the code question in semantic_seg

    Hi, I have a questation about the logit_scale and logit_bias in semantic_seg. The shape of the above parameter is (1, num_classes, 1, 1), why not is (1, num_classes, 512, 512) which is matched the input image size for semantic segmenation.

    opened by Ianresearch 8
  • Value of the learned scale and bias vector?

    Value of the learned scale and bias vector?

    Hi, did you check the value change of the learned scale and bias vector throughout the training process? I find the value of them change in the first few iterations and remain stable in the rest time on my own classification dataset. I wonder how the learned vectors look like in your paper? Thanks!

    opened by Jacobew 1
Owner
BaseDetection Team of Megvii
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022