Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Related tags

Deep LearningDisAlign
Overview

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

[Paper][Code]

We implement the classification, object detection and instance segmentation tasks based on our cvpods. The users should install cvpods first and run the experiments in this repo.

Changelog

  • 4.23.2021 Update the DisAlign on LVIS v0.5(Mask R-CNN + Res50)
  • 4.12.2021 Update the README

0. How to Use

  • Step-1: Install the latest cvpods.
  • Step-2: cd cvpods
  • Step-3: Prepare dataset for different tasks.
  • Step-4: git clone https://github.com/Megvii-BaseDetection/DisAlign playground_disalign
  • Step-5: Enter one folder and run pods_train --num-gpus 8
  • Step-6: Use pods_test --num-gpus 8 to evaluate the last the checkpoint

1. Image Classification

We support the the following three datasets:

  • ImageNet-LT Dataset
  • iNaturalist-2018 Dataset
  • Place-LT Dataset

We refer the user to CLS_README for more details.

2. Object Detection/Instance Segmentation

We support the two versions of the LVIS dataset:

  • LVIS v0.5
  • LVIS v1.0

Highlight

  1. To speedup the evaluation on LVIS dataset, we provide the C++ optimized evaluation api by modifying the coco_eval(C++) in cvpods.
  • The C++ version lvis_eval API will save ~30% time when calculating the mAP.
  1. We provide support for the metric of AP_fixed and AP_pool proposed in large-vocab-devil
  2. We will support more recent works on long-tail detection in this project(e.g. EQLv2, CenterNet2, etc.) in the future.

We refer the user to DET_README for more details.

3. Semantic Segmentation

We adopt the mmsegmentation as the codebase for runing all experiments of DisAlign. Currently, the user should use DisAlign_Seg for the semantic segmentation experiments. We will add the support for these experiments in cvpods in the future.

Acknowledgement

Thanks for the following projects:

Citing DisAlign

If you are using the DisAlign in your research or with to refer to the baseline results publised in this repo, please use the following BibTex entry.

@inproceedings{zhang2021disalign,
  title={Distribution Alignment: A Unified Framework for Long-tail Visual Recognition.},
  author={Zhang, Songyang and Li, Zeming and Yan, Shipeng and He, Xuming and Sun, Jian},
  booktitle={CVPR},
  year={2021}
}

License

This repo is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Comments
  • scale in cosine classifier

    scale in cosine classifier

    Hi, thanks for your great work! I notice you use the cosine classifier in many experiments and it can get a better baseline. The formula is as follows

    image

    I am wondering the value of s?

    opened by L1aoXingyu 5
  •  Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Is it correct to freeze the weight and bias of the DisAlign Linear Layer as well?

    Hello. Thank you for your project! I'm testing your code on my custom dataset. My task is classification. I have a question about your code implementation.

    https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L56-L62

    From my understanding, in stage 2, remove the linear layer used in stage 1 and add DisAlign Linear Layer. And freeze all parts except for logit_scale, logit_bias, and confidence_layer. At this time, the weight and bias of DisAlignLinear are also frozen. (self.weight, self.bias) Is my understanding correct?

    If so, are the weight and bias of DisAlignLinearLayer fixed after the initialization? (The weight and bias of the linear layer in stage 1 are not copied either)

    If my understanding is correct, why is the weight of DisAlignLinear also frozen?

    I will wait for your reply. thanks!

    opened by jeongHwarr 4
  • Where is the DisAlignLinear module?

    Where is the DisAlignLinear module?

    Hello. Thank you for your impressive project!

    I want to apply DisAlign to classification. However, an error occurs in the import part. https://github.com/Megvii-BaseDetection/DisAlign/blob/a2fc3500a108cb83e3942293a5675c97ab3a2c6e/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/net.py#L7 I coudn't find the DisAlignLinear in cvpods.layers. and there also isn't exist at https://github.com/Megvii-BaseDetection/cvpods/tree/master/cvpods/layers How can I solve this problem?

    Thank you!

    opened by jeongHwarr 4
  • Can someone kindly share their codes of Classification task on ImageNet_LT?

    Can someone kindly share their codes of Classification task on ImageNet_LT?

    I tried to train the proposed method on ImageNet_LT, but I can only get an average testing rate about 49%, which is far from the rate described in the paper (52.9). Some of the details regarding my implementations are given as follows: (1) The feature extractor is ResNexT-50 and the head classifier is a linear classifier. The testing accuracy in Stage-One is 43.9%, which is OK.

    (2) The testing accuracy of adopting cRT method in Stage-Two is 49.6%, which is identical to one reported in other papers. (3) When fine-tuning the model in Stage-2, both the feature-extractor and head classifier are frozen, and a DisAliLinear model (which is implemented in CVPODs) is retrained. The testing accuracy can only reach 48.8%, which is far away from the one reported in your paper.

    opened by smallcube 4
  • The code for semantic segmentation is missing

    The code for semantic segmentation is missing

    Hi, thank you for the nice work, but the code for semantic segmentation is missing and the URL for it in the README could not be opened. Could you please fix this issue?

    opened by curiosity654 3
  • About the reference Distribution p_r in Eq. (10)

    About the reference Distribution p_r in Eq. (10)

    Hi, Thank you for providing your code. Here I was wondering the Equation (10) in your paper (The definition of p_r), which seems not to be a distribution. Since every x_i can only have one label, the reference distribution p_r(y| x_i) will be the distribution like (0, 0, 0,...,w_c, 0, 0,...,0). And the sum of this distribution is w_c, but not 1.

    Could you help me understand this equation? Thanks in advance.

    opened by Kevinz-code 3
  • import error

    import error

    Hi, thanks for the great work. Maybe I missed it, but it seems that the code for this project has been incorporated into cvpods. I couldn't launch any experiments due to ImportErrors like: from cvpods.layers import DisAlignLinear ImportError: cannot import name 'DisAlignLinear' from 'cvpods.layers' Also, I didn't find the corresponding functions in cvpods.

    Any help will be appreciated. Thanks.

    opened by YUE-FAN 2
  • about the confidence score σ(x)

    about the confidence score σ(x)

    In the paper, the σ(x) is implemented as a linear layer followed by a non-linear activation function (e.g., sigmoid function) for all input x. How to understand the input x?the matrix of raw iamge, or the extracted features, even or cls_score? Thank you!

    opened by lzed2399 2
  • exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground

    Dear author, I have some questions about the code and paper:

    1. exp_reweight = exp_reweight / np.sum(exp_reweight) * num_foreground Why "exp_reweight" is multiplied by the coefficient "num_foreground"? It is not mentioned in the paper.
    2. Is "K" in the empirical class frequencies r = [r1, · · · , rK] on the training set in the paper the same as the class number C of the training set?
    opened by Liu-wanbing 2
  • The DisAlign_Seg page can't open

    The DisAlign_Seg page can't open

    opened by Kittywyk 1
  • Do you use validation dataset?

    Do you use validation dataset?

    https://github.com/Megvii-BaseDetection/DisAlign/blob/main/classification/imagenetlt/resnext50/resx50.scratch.imagenet_lt.224size.90e.disalign.10e/config.py#L31

    It seems that you only use test dataset? What is the reason for that?

    opened by qianlanwyd 1
  • How can I test and augtest the trained semseg DisAlign model?

    How can I test and augtest the trained semseg DisAlign model?

    opened by jh151170 0
  • the code question in semantic_seg

    the code question in semantic_seg

    Hi, I have a questation about the logit_scale and logit_bias in semantic_seg. The shape of the above parameter is (1, num_classes, 1, 1), why not is (1, num_classes, 512, 512) which is matched the input image size for semantic segmenation.

    opened by Ianresearch 8
  • Value of the learned scale and bias vector?

    Value of the learned scale and bias vector?

    Hi, did you check the value change of the learned scale and bias vector throughout the training process? I find the value of them change in the first few iterations and remain stable in the rest time on my own classification dataset. I wonder how the learned vectors look like in your paper? Thanks!

    opened by Jacobew 1
Owner
BaseDetection Team of Megvii
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
All course materials for the Zero to Mastery Machine Learning and Data Science course.

Zero to Mastery Machine Learning Welcome! This repository contains all of the code, notebooks, images and other materials related to the Zero to Maste

Daniel Bourke 1.6k Jan 08, 2023
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022