Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Related tags

Deep LearningSIB-CL
Overview

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

This repository contains all source code used to generate the results in the article "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science". (url: to-be-updated)

  • The folder generate_datasets contains all numerical programs used to generate the datasets, for both Photonic Crystals (PhC) and the Time-independent Schrodinger Equation (TISE)
  • main.py is the main code used to train the neural networks (explained in detail below)

Dependencies

Please install the required Python packages: pip install -r requirements.txt

A python3 environment can be created prior to this: conda create -n sibcl python=3.8; conda activate sibcl

Assess to MATLAB is required to calculate the density-of-states (DOS) of PhCs.

Dataset Generation

Photonic Crystals (PhCs)

Relevant code stored in generate_datasets/PhC/. Periodic unit cells are defined using a level set of a Fourier sum; different unit cells can be generated using the get_random() method of the FourierPhC class defined in fourier_phc.py.

To generate the labeled PhC datasets, we first compute their band structures using MPB. This can be executed via:

For the target dataset of random fourier unit cells, python phc_gendata.py --h5filename="mf1-s1" --pol="tm" --nsam=5000 --maxF=1 --seed=1;

and for the source dataset of simple cylinders, python phc_gencylin.py --h5filename="cylin" --pol="tm" --nsam=10000;

each program will create a dataset with the eigen-frequencies, group velocities, etc, stored in a .h5 file (which can be accessed using the h5py package). We then calculate the DOS using the GRR method provided by the MATLAB code https://github.com/boyuanliuoptics/DOS-calculation/blob/master/DOS_GGR.m. To do so, we first parse the data to create the .txt files required as inputs to the program, compute the DOS using MATLAB and then add the DOS labels back to the original .h5 files. These steps will be executed automatically by simply running the shell script get_DOS.sh after modifying the h5 filename identifier defined at the top. Note that for this to run smoothly, python and MATLAB will first need to be added to PATH.

Time-independent Schrodinger Equation (TISE)

Relevant code stored in generate_datasets/TISE/. Example usage:

To generate target dataset, e.g. in 3D, python tise_gendata.py --h5filename="tise3d" --ndim 3 --nsam 5000

To generate low resolution dataset, python tise_gendata.py --h5filename='tise3d_lr' --ndim 3 --nsam 10000 --lowres --orires=32 (--orires defines the resolution of the input to the neural network)

To generate qho dataset, python tise_genqho.py --h5filename='tise2d_qho' --ndim 2 --nsam 10000

SIB-CL and baselines training

Training of the neural networks for all problems introduced in the article (i.e. PhC DOS prediction, PhC Band structure prediction, TISE ground state energy prediction using both low resolution or QHO data as surrogate) can all be executed using main.py by indicating the appropriate flags (see below). This code also allows training via the SIB-CL framework or any of the baselines, again with the use of the appropriate flag. This code also contains other prediction problems not presented in the article, such as predicting higher energy states of TISE, TISE wavefunctions and single band structure.

Important flags:

--path_to_h5: indicate directory where h5 datasets are located. The h5 filenames defined in the dataset classes in datasets_PhC_SE.py should also be modified according to the names used during dataset generation.

--predict: defines prediction task. Options: 'DOS', 'bandstructures', 'eigval', 'oneband', 'eigvec'

--train: specify if training via SIB-CL or baselines. Options: 'sibcl', 'tl', 'sl', 'ssl' ('ssl' performs regular contrastive learning without surrogate dataset). For invariance-boosted baselines, e.g. TL-I or SL-I, specify 'tl' or 'sl' here and add the relevant invariances flags (see below).

--iden: required; specify identifier for saving of models, training logs and results

Invariances flags: --translate_pbc (set this flag to include rolling translations), --pg_uniform (set this flag to uniformly sample the point group symmetry transformations), --scale (set this flag to scale unit cell - used for PhC), --rotate (set this flag to do 4-fold rotations), --flip (set this flag to perform horizontal and vertical mirrors). If --pg_uniform is used, there is no need to include --rotate and --flip.

Other optional flags can be displayed via python main.py --help. Examples of shell scripts can be found in the sh_scripts folder.

Training outputs:

By default, running main.py will create 3 subdirectories:

  • ./pretrained_models/: state dictionaries of pretrained models at various epochs indicated in the eplist variable will be saved to this directory. These models are used for further fine-tuning.
  • ./dicts/: stores the evaluation losses on the test set as dictionaries saved as .json files. The results can then be plotted using plot_results.py.
  • ./tlogs/: training curves for pre-training and fine-tuning are stored in dictionaries saved as .json files. The training curves can be plotted using get_training_logs.py. Alternatively, the --log_to_tensorboard flag can be set and training curves can be viewed using tensorboard; in this case, the dictionaries will not be generated.
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

PyTorch implementation of
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

Releases(v1.0)
Owner
Charlotte Loh
PhD candidate at MIT EECS
Charlotte Loh
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
EM-POSE 3D Human Pose Estimation from Sparse Electromagnetic Trackers.

EM-POSE: 3D Human Pose Estimation from Sparse Electromagnetic Trackers This repository contains the code to our paper published at ICCV 2021. For ques

Facebook Research 62 Dec 14, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022