Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Related tags

Deep LearningSIB-CL
Overview

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

This repository contains all source code used to generate the results in the article "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science". (url: to-be-updated)

  • The folder generate_datasets contains all numerical programs used to generate the datasets, for both Photonic Crystals (PhC) and the Time-independent Schrodinger Equation (TISE)
  • main.py is the main code used to train the neural networks (explained in detail below)

Dependencies

Please install the required Python packages: pip install -r requirements.txt

A python3 environment can be created prior to this: conda create -n sibcl python=3.8; conda activate sibcl

Assess to MATLAB is required to calculate the density-of-states (DOS) of PhCs.

Dataset Generation

Photonic Crystals (PhCs)

Relevant code stored in generate_datasets/PhC/. Periodic unit cells are defined using a level set of a Fourier sum; different unit cells can be generated using the get_random() method of the FourierPhC class defined in fourier_phc.py.

To generate the labeled PhC datasets, we first compute their band structures using MPB. This can be executed via:

For the target dataset of random fourier unit cells, python phc_gendata.py --h5filename="mf1-s1" --pol="tm" --nsam=5000 --maxF=1 --seed=1;

and for the source dataset of simple cylinders, python phc_gencylin.py --h5filename="cylin" --pol="tm" --nsam=10000;

each program will create a dataset with the eigen-frequencies, group velocities, etc, stored in a .h5 file (which can be accessed using the h5py package). We then calculate the DOS using the GRR method provided by the MATLAB code https://github.com/boyuanliuoptics/DOS-calculation/blob/master/DOS_GGR.m. To do so, we first parse the data to create the .txt files required as inputs to the program, compute the DOS using MATLAB and then add the DOS labels back to the original .h5 files. These steps will be executed automatically by simply running the shell script get_DOS.sh after modifying the h5 filename identifier defined at the top. Note that for this to run smoothly, python and MATLAB will first need to be added to PATH.

Time-independent Schrodinger Equation (TISE)

Relevant code stored in generate_datasets/TISE/. Example usage:

To generate target dataset, e.g. in 3D, python tise_gendata.py --h5filename="tise3d" --ndim 3 --nsam 5000

To generate low resolution dataset, python tise_gendata.py --h5filename='tise3d_lr' --ndim 3 --nsam 10000 --lowres --orires=32 (--orires defines the resolution of the input to the neural network)

To generate qho dataset, python tise_genqho.py --h5filename='tise2d_qho' --ndim 2 --nsam 10000

SIB-CL and baselines training

Training of the neural networks for all problems introduced in the article (i.e. PhC DOS prediction, PhC Band structure prediction, TISE ground state energy prediction using both low resolution or QHO data as surrogate) can all be executed using main.py by indicating the appropriate flags (see below). This code also allows training via the SIB-CL framework or any of the baselines, again with the use of the appropriate flag. This code also contains other prediction problems not presented in the article, such as predicting higher energy states of TISE, TISE wavefunctions and single band structure.

Important flags:

--path_to_h5: indicate directory where h5 datasets are located. The h5 filenames defined in the dataset classes in datasets_PhC_SE.py should also be modified according to the names used during dataset generation.

--predict: defines prediction task. Options: 'DOS', 'bandstructures', 'eigval', 'oneband', 'eigvec'

--train: specify if training via SIB-CL or baselines. Options: 'sibcl', 'tl', 'sl', 'ssl' ('ssl' performs regular contrastive learning without surrogate dataset). For invariance-boosted baselines, e.g. TL-I or SL-I, specify 'tl' or 'sl' here and add the relevant invariances flags (see below).

--iden: required; specify identifier for saving of models, training logs and results

Invariances flags: --translate_pbc (set this flag to include rolling translations), --pg_uniform (set this flag to uniformly sample the point group symmetry transformations), --scale (set this flag to scale unit cell - used for PhC), --rotate (set this flag to do 4-fold rotations), --flip (set this flag to perform horizontal and vertical mirrors). If --pg_uniform is used, there is no need to include --rotate and --flip.

Other optional flags can be displayed via python main.py --help. Examples of shell scripts can be found in the sh_scripts folder.

Training outputs:

By default, running main.py will create 3 subdirectories:

  • ./pretrained_models/: state dictionaries of pretrained models at various epochs indicated in the eplist variable will be saved to this directory. These models are used for further fine-tuning.
  • ./dicts/: stores the evaluation losses on the test set as dictionaries saved as .json files. The results can then be plotted using plot_results.py.
  • ./tlogs/: training curves for pre-training and fine-tuning are stored in dictionaries saved as .json files. The training curves can be plotted using get_training_logs.py. Alternatively, the --log_to_tensorboard flag can be set and training curves can be viewed using tensorboard; in this case, the dictionaries will not be generated.
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

PyTorch implementation of
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

Releases(v1.0)
Owner
Charlotte Loh
PhD candidate at MIT EECS
Charlotte Loh
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information This repository contains code, model, dataset for ChineseBERT at ACL2021. Ch

413 Dec 01, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Аналитика доходности инвестиционного портфеля в Тинькофф брокере

Аналитика доходности инвестиционного портфеля Тиньков Видео на YouTube Для работы скрипта нужно установить три переменных окружения: export TINKOFF_TO

Alexey Goloburdin 64 Dec 17, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022