pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Overview

Unofficial implementation:

  • MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper)
  • InsDis: Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination (Paper)

Official implementation:

  • CMC: Contrastive Multiview Coding (Paper)
  • Rethinking Image Mixture for Unsupervised Visual Representation Learning (Paper)

Contrastive Multiview Coding

This repo covers the implementation for CMC (as well as Momentum Contrast and Instance Discrimination), which learns representations from multiview data in a self-supervised way (by multiview, we mean multiple sensory, multiple modal data, or literally multiple viewpoint data. It's flexible to define what is a "view"):

"Contrastive Multiview Coding" Paper, Project Page.

Teaser Image

Highlights

(1) Representation quality as a function of number of contrasted views.

We found that, the more views we train with, the better the representation (of each single view).

(2) Contrastive objective v.s. Predictive objective

We compare the contrastive objective to cross-view prediction, finding an advantage to the contrastive approach.

(3) Unsupervised v.s. Supervised

Several ResNets trained with our unsupervised CMC objective surpasses supervisedly trained AlexNet on ImageNet classification ( e.g., 68.4% v.s. 59.3%). For this first time on ImageNet classification, unsupervised methods are surpassing the classic supervised-AlexNet proposed in 2012 (CPC++ and AMDIM also achieve this milestone concurrently).

Updates

Aug 20, 2019 - ResNets on ImageNet have been added.

Nov 26, 2019 - New results updated. Implementation of MoCo and InsDis added.

Jan 18, 2019 - Weights of InsDis and MoCo added.

Installation

This repo was tested with Ubuntu 16.04.5 LTS, Python 3.5, PyTorch 0.4.0, and CUDA 9.0. But it should be runnable with recent PyTorch versions >=0.4.0

Note: It seems to us that training with Pytorch version >= 1.0 yields slightly worse results. If you find the similar discrepancy and figure out the problem, please report this since we are trying to fix it as well.

Training AlexNet/ResNets with CMC on ImageNet

Note: For AlexNet, we split across the channel dimension and use each half to encode L and ab. For ResNets, we use a standard ResNet model to encode each view.

NCE flags:

  • --nce_k: number of negatives to contrast for each positive. Default: 4096
  • --nce_m: the momentum for dynamically updating the memory. Default: 0.5
  • --nce_t: temperature that modulates the distribution. Default: 0.07 for ImageNet, 0.1 for STL-10

Path flags:

  • --data_folder: specify the ImageNet data folder.
  • --model_path: specify the path to save model.
  • --tb_path: specify where to save tensorboard monitoring events.

Model flag:

  • --model: specify which model to use, including alexnet, resnets18, resnets50, and resnets101

IM flag:

  • --IM: train with IM space.
  • --IM_type: specify the type of IM and other augmentation methods that we implement, including: 'IM', 'global', 'region', 'Cutout', 'RandomErasing'.

Global mixture:

  • --g_alpha: global mix alpha. Default: 1.0
  • --g_num: global mix num. Default: 2
  • --g_prob: global mix prob. Default: 0.1

Region-level mixture:

  • --r_beta: region mix beta. Default: 1.0
  • --r_prob: region mix prob. Default: 0.1
  • --r_num: region mix num. Default: 2
  • --r_pixel_decay: region mix pixel decay. Default: 1.0

An example of command line for training CMC (Default: AlexNet on Single GPU)

CUDA_VISIBLE_DEVICES=0 python train_CMC.py --batch_size 256 --num_workers 36 \
 --data_folder /path/to/data 
 --model_path /path/to/save 
 --tb_path /path/to/tensorboard

Training CMC with ResNets requires at least 4 GPUs, the command of using resnet50v1 looks like

CUDA_VISIBLE_DEVICES=0,1,2,3 python train_CMC.py --model resnet50v1 --batch_size 128 --num_workers 24
 --data_folder path/to/data \
 --model_path path/to/save \
 --tb_path path/to/tensorboard \

To support mixed precision training, simply append the flag --amp, which, however is likely to harm the downstream classification. I measure it on ImageNet100 subset and the gap is about 0.5-1%.

By default, the training scripts will use L and ab as two views for contrasting. You can switch to YCbCr by specifying --view YCbCr, which yields better results (about 0.5-1%). If you want to use other color spaces as different views, follow the line here and other color transfer functions are already available in dataset.py.

Training Linear Classifier

Path flags:

  • --data_folder: specify the ImageNet data folder. Should be the same as above.
  • --save_path: specify the path to save the linear classifier.
  • --tb_path: specify where to save tensorboard events monitoring linear classifier training.

Model flag --model is similar as above and should be specified.

Specify the checkpoint that you want to evaluate with --model_path flag, this path should directly point to the .pth file.

This repo provides 3 ways to train the linear classifier: single GPU, data parallel, and distributed data parallel.

An example of command line for evaluating, say ./models/alexnet.pth, should look like:

CUDA_VISIBLE_DEVICES=0 python LinearProbing.py --dataset imagenet \
 --data_folder /path/to/data \
 --save_path /path/to/save \
 --tb_path /path/to/tensorboard \
 --model_path ./models/alexnet.pth \
 --model alexnet --learning_rate 0.1 --layer 5

Note: When training linear classifiers on top of ResNets, it's important to use large learning rate, e.g., 30~50. Specifically, change --learning_rate 0.1 --layer 5 to --learning_rate 30 --layer 6 for resnet50v1 and resnet50v2, to --learning_rate 50 --layer 6 for resnet50v3.

Pretrained Models

Pretrained weights can be found in Dropbox.

Note:

  • CMC weights are trained with NCE loss, Lab color space, 4096 negatives and amp option. Switching to softmax-ce loss, YCbCr, 65536 negatives, and turning off amp option, are likely to improve the results.
  • CMC_resnet50v2.pth and CMC_resnet50v3.pth are trained with FastAutoAugment, which improves the downstream accuracy by 0.8~1%. I will update weights without FastAutoAugment once they are available.

InsDis and MoCo are trained using the same hyperparameters as in MoCo (epochs=200, lr=0.03, lr_decay_epochs=120,160, weight_decay=1e-4), but with only 4 GPUs.

Arch #Params(M) Loss #Negative Accuracy(%) Delta(%)
InsDis ResNet50 24 NCE 4096 56.5 -
InsDis ResNet50 24 Softmax-CE 4096 57.1 +0.6
InsDis ResNet50 24 Softmax-CE 16384 58.5 +1.4
MoCo ResNet50 24 Softmax-CE 16384 59.4 +0.9

Momentum Contrast and Instance Discrimination

I have implemented and tested MoCo and InsDis on a ImageNet100 subset (but the code allows one to train on full ImageNet simply by setting the flag --dataset imagenet):

The pre-training stage:

  • For InsDis:
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_moco_ins.py \
     --batch_size 128 --num_workers 24 --nce_k 16384 --softmax
    
  • For MoCo:
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_moco_ins.py \
     --batch_size 128 --num_workers 24 --nce_k 16384 --softmax --moco
    

The linear evaluation stage:

  • For both InsDis and MoCo (lr=10 is better than 30 on this subset, for full imagenet please switch to 30):
    CUDA_VISIBLE_DEVICES=0 python eval_moco_ins.py --model resnet50 \
     --model_path /path/to/model --num_workers 24 --learning_rate 10
    

The comparison of CMC (using YCbCr), MoCo and InsDIS on my ImageNet100 subset, is tabulated as below:

Arch #Params(M) Loss #Negative Accuracy
InsDis ResNet50 24 NCE 16384 --
InsDis ResNet50 24 Softmax-CE 16384 69.1
MoCo ResNet50 24 NCE 16384 --
MoCo ResNet50 24 Softmax-CE 16384 73.4
CMC 2xResNet50half 12 NCE 4096 --
CMC 2xResNet50half 12 Softmax-CE 4096 75.8

Citation

If you find this repo useful for your research, please consider citing the paper

@article{tian2019contrastive,
  title={Contrastive Multiview Coding},
  author={Tian, Yonglong and Krishnan, Dilip and Isola, Phillip},
  journal={arXiv preprint arXiv:1906.05849},
  year={2019}
}

For any questions, please contact Yonglong Tian ([email protected]).

Acknowledgements

Part of this code is inspired by Zhirong Wu's unsupervised learning algorithm lemniscate.

Owner
Zhiqiang Shen
Zhiqiang Shen
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022