PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Overview

SupContrast: Supervised Contrastive Learning

This repo covers an reference implementation for the following papers in PyTorch, using CIFAR as an illustrative example:
(1) Supervised Contrastive Learning. Paper
(2) A Simple Framework for Contrastive Learning of Visual Representations. Paper

Loss Function

The loss function SupConLoss in losses.py takes features (L2 normalized) and labels as input, and return the loss. If labels is None or not passed to the it, it degenerates to SimCLR.

Usage:

from losses import SupConLoss

# define loss with a temperature `temp`
criterion = SupConLoss(temperature=temp)

# features: [bsz, n_views, f_dim]
# `n_views` is the number of crops from each image
# better be L2 normalized in f_dim dimension
features = ...
# labels: [bsz]
labels = ...

# SupContrast
loss = criterion(features, labels)
# or SimCLR
loss = criterion(features)
...

Comparison

Results on CIFAR-10:

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy 95.0
SupContrast ResNet50 Supervised Contrastive 96.0
SimCLR ResNet50 Unsupervised Contrastive 93.6

Results on CIFAR-100:

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy 75.3
SupContrast ResNet50 Supervised Contrastive 76.5
SimCLR ResNet50 Unsupervised Contrastive 70.7

Results on ImageNet (Stay tuned):

Arch Setting Loss Accuracy(%)
SupCrossEntropy ResNet50 Supervised Cross Entropy -
SupContrast ResNet50 Supervised Contrastive 79.1 (MoCo trick)
SimCLR ResNet50 Unsupervised Contrastive -

Running

You might use CUDA_VISIBLE_DEVICES to set proper number of GPUs, and/or switch to CIFAR100 by --dataset cifar100.
(1) Standard Cross-Entropy

python main_ce.py --batch_size 1024 \
  --learning_rate 0.8 \
  --cosine --syncBN \

(2) Supervised Contrastive Learning
Pretraining stage:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5 \
  --temp 0.1 \
  --cosine

You can also specify --syncBN but I found it not crucial for SupContrast (syncBN 95.9% v.s. BN 96.0%).
Linear evaluation stage:

python main_linear.py --batch_size 512 \
  --learning_rate 5 \
  --ckpt /path/to/model.pth

(3) SimCLR
Pretraining stage:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5 \
  --temp 0.5 \
  --cosine --syncBN \
  --method SimCLR

The --method SimCLR flag simply stops labels from being passed to SupConLoss criterion. Linear evaluation stage:

python main_linear.py --batch_size 512 \
  --learning_rate 1 \
  --ckpt /path/to/model.pth

On custom dataset:

python main_supcon.py --batch_size 1024 \
  --learning_rate 0.5  \ 
  --temp 0.1 --cosine \
  --dataset path \
  --data_folder ./path \
  --mean "(0.4914, 0.4822, 0.4465)" \
  --std "(0.2675, 0.2565, 0.2761)" \
  --method SimCLR

The --data_folder must be of form ./path/label/xxx.png folowing https://pytorch.org/docs/stable/torchvision/datasets.html#torchvision.datasets.ImageFolder convension.

and

t-SNE Visualization

(1) Standard Cross-Entropy

(2) Supervised Contrastive Learning

(3) SimCLR

Reference

@Article{khosla2020supervised,
    title   = {Supervised Contrastive Learning},
    author  = {Prannay Khosla and Piotr Teterwak and Chen Wang and Aaron Sarna and Yonglong Tian and Phillip Isola and Aaron Maschinot and Ce Liu and Dilip Krishnan},
    journal = {arXiv preprint arXiv:2004.11362},
    year    = {2020},
}
Owner
Yonglong Tian
CS Ph.D. student in AI @ MIT
Yonglong Tian
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
AI-generated-characters for Learning and Wellbeing

AI-generated-characters for Learning and Wellbeing Click here for the full project page. This repository contains the source code for the paper AI-gen

MIT Media Lab 214 Jan 01, 2023
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Perceiver - Pytorch Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch Install $ pip install perceiver-pytorch Usage

Phil Wang 876 Dec 29, 2022