Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Overview

Perceiver - Pytorch

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Install

$ pip install perceiver-pytorch

Usage

import torch
from perceiver_pytorch import Perceiver

model = Perceiver(
    num_fourier_features = 6,    # number of fourier features, with original value (2 * K + 1)
    depth = 48,                  # depth of net, in paper, they went deep, making up for lack of attention
    num_latents = 6,             # number of latents, or induced set points, or centroids. different papers giving it different names
    cross_dim = 512,             # cross attention dimension
    latent_dim = 512,            # latent dimension
    cross_heads = 1,             # number of heads for cross attention. paper said 1
    latent_heads = 8,            # number of heads for latent self attention, 8
    cross_dim_head = 64,
    latent_dim_head = 64,
    num_classes = 1000,          # output number of classes
    attn_dropout = 0.,
    ff_dropout = 0.,
    weight_tie_layers = False    # whether to weight tie layers (optional, as indicated in the diagram)
)

img = torch.randn(1, 224 * 224) # 1 imagenet image, pixelized

model(img) # (1, 1000)

Citations

@misc{jaegle2021perceiver,
    title   = {Perceiver: General Perception with Iterative Attention},
    author  = {Andrew Jaegle and Felix Gimeno and Andrew Brock and Andrew Zisserman and Oriol Vinyals and Joao Carreira},
    year    = {2021},
    eprint  = {2103.03206},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Latent averaging to the logits?

    Latent averaging to the logits?

    I read through the paper last night and came away confused about a few things. I looked through your code hoping for some clarity.

    One issue that doesn't seem to be explained in the paper (or I am missing it) is how the authors go from a set of latents to the logits used at the classification head. You implemented this by taking the mean of the latent set:

    https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_pytorch.py#L203

    Is this actually how the authors convert to logits?

    opened by neonbjb 7
  • PerceiverAR?

    PerceiverAR?

    Hey @lucidrains - love this repo, and still trying to wrap my head around the various difference between Perceiver architectures; how hard would it be to extend PerceiverIO to PerceiverAR; what fundamentally needs to change?

    opened by siddk 5
  • Not using the classification head in Perceiver

    Not using the classification head in Perceiver

    Hi @lucidrains, thank you for your great job!

    I'd like to use the Perceiver (not PerceiverIO) without the classification head (average and projection). Do you think we could add an option to avoid using it? I can do a PR if you want.

    Thanks!

    opened by gegallego 4
  • Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Hi,

    According to perceiver io paper's (https://arxiv.org/abs/2107.14795) architectural details, they mention that the decoder attention block contains a cross attention block (4), which is already implemented in the perceiver_io.py script (Line 151), followed by a Feedforward network, given by equation (6) in the paper, which is not present in that script. I am not aware of the repercussions of not having FF in the decoder module but it might be a good idea to have it in the implementation. Something like self.decoder_ff = PreNorm(FeedForward(queries_dim)) would do the job. Experimentally, the authors had found that omitting equation (5) is helpful.

    opened by Hritikbansal 4
  • Positional encoding are already part of the input

    Positional encoding are already part of the input

    Hello! First of all, thank you for this implementation.

    My inputs already have the proper positional encoding as part of the channel axis. Would it be possible to add a feature to deactivate the default implementation of the positional encoding?

    Thank you!

    opened by Atlis 4
  • x = self.latents + self.pos_emb

    x = self.latents + self.pos_emb

    self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
    self.pos_emb = nn.Parameter(torch.randn(num_latents, latent_dim))
    ...
    x = self.latents + self.pos_emb
    

    I'm not very familiar with pytorch, but does this make sense? I mean, what's intended when 2 trainable weight matrices are simply summed and that's that's the only place where both latents and pos_emb appear. It looks like it can be replaced with only one matrix.

    opened by galchinsky 4
  • Fourier encoding is not similar to the paper

    Fourier encoding is not similar to the paper

    First of all, thanks for sharing the code !

    I have a follow up question to #4.

    In the paper, the authors mentioned about [sin(f_kπx_d), cos(f_kπx_d)], where f_k is a bank of frequencies spaced log-linearly between 1 and µ/2. Can you maybe point out how you came to the 1/2**i scaling in the code ?

    https://github.com/lucidrains/perceiver-pytorch/blob/6ae733773d29cb29383f3ac7b45af8cb6bd2c0dc/perceiver_pytorch/perceiver_pytorch.py#L28-L35

    Thanks!

    opened by cheneeheng 4
  • Fourier encoding should be for position coordinates instead of byte array

    Fourier encoding should be for position coordinates instead of byte array

    The fourier_encode function as implemented takes as input a byte array x and directly encodes it with sin/cos before concating with the input.

    As I understand the NeRF position encodings, they encode the x/y/etc. position coordinates, and not a transformation of the data itself. From the Perceiver paper:

    We parametrize the frequency encoding to take the values [sin(fkπxd), cos(fkπxd)], where the frequencies fk is the kth band of a bank of frequencies spaced log-linearly between 1 and µ/2... For example, by allowing the network to resolve the maximum frequency present in an input array, we can encourage it to learn to compare the values of bytes at any positions in the input array. xd is the value of the input position along the dth dimension (e.g. for images d = 2 and for video d = 3). xd takes values in [−1, 1] for each dimension. We concatenate the raw positional value xd to produce the final representation of position. This results in a positional encoding of size d(2K + 1).

    NeRF position encoding examples:

    • https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/run_nerf_helpers.py#L22
    • https://github.com/ankurhanda/nerf2D
    opened by eridgd 4
  • Positional encoding frequency bands should be linearly spaced

    Positional encoding frequency bands should be linearly spaced

    A small bug, but as alluded to in this comment by @marcdumon, it seems as though the frequency bands are indeed spaced linearly in the official JAX implementation.

    opened by djl11 2
  • Bug in fourier_encode (?)

    Bug in fourier_encode (?)

    Thank you for this great implementation. I'm learning a lot from it!

    I think I found a problem in the fourier_encode method. In this line: https://github.com/lucidrains/perceiver-pytorch/blob/b33aced4e1b266aeb1383e03ab63f0a9951f9126/perceiver_pytorch/perceiver_pytorch.py#L36

    the scales are always the same whatever value of parameter base. Example:

    max_freq = 10, num_bands=6, base = 2
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    max_freq = 10, num_bands=6, base = 10
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    opened by marcdumon 2
  • Attention softmax is applied to incorrect dimension?

    Attention softmax is applied to incorrect dimension?

    I am studying multi-head attention. When I was reading through [1], I found that the attenion softmax is applied over the last dimension of the similarity tensor sim:

            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
    
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
    
            if exists(mask):
                <removed>
    
            # attention, what we cannot get enough of
            attn = sim.softmax(dim = -1)
    

    If I understand correctly sim has the shape (b*h) n1 n2. The softmax is computed over the last dimension n2. Shouldn't the softmax be applied to matrices with all the similarity values of a single head (i.e. with shape n1, n2)?

    [1] https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_io.py#L97

    opened by breuderink 2
  • Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Hey Lucid, love the work, it appears you deprecated base in fourier_encode at https://github.com/lucidrains/perceiver-pytorch/commit/144b0d9716a7212b5fd6d95a2267c4d4a08b56a7

    But experimental.py, gated.py, mixed_latents.py are still trying to define the base within the forward pass. https://github.com/lucidrains/perceiver-pytorch/blob/abbb5d5949d3509c57749bd134f5068f2761aac7/perceiver_pytorch/experimental.py#L122 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/mixed_latents.py#L85 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/gated.py#L103

    Thanks again, keep up the great work.

    opened by TannerLaBorde 0
  • Audio + Text data?

    Audio + Text data?

    Can someone please guide me on how you can process both audio and .txt data through perceiver simultaneously for multimodality learning?

    An example code would be nice.

    Thanks

    opened by Sidz1812 1
  • just a suggestion

    just a suggestion

    Hi I like to start with thanking you for such a great work with a lot of great implementations. I have a small suggestion. I suggest for all your codes/modules try to add if __name__ == "__main__": so that if someone just wants to use one file/module can easily try that without having going through whole implementations. for example I am trying to use the this, in case of having a if __name__ == "__main__": I can easily try to run a random input and see how it will work. This will increase the usability with a huge amount.

    Keep up the great work :)

    opened by seyeeet 4
  • What should I change if I want to use data with input size 720*184

    What should I change if I want to use data with input size 720*184

    thanks for sharing this code, I was wondering what should I change if I want to be able to use data that can be converted into images with an input size of 720*184? thanks in advance

    opened by Oussamab21 0
  • Question regarding queries dimensionality in Perceiver IO

    Question regarding queries dimensionality in Perceiver IO

    Hi @lucidrains,

    I think I may be missing something - why do we define the perceiver IO queries vector to have a batch dimension (i.e. queries = torch.randn(1, 128, 32))? Was this just to make the code work nicely? Shouldnt we be using queries = torch.randn(128, 32) ? I expect to use the same embedding for all of my batch elements, which is IIUC what your code is doing.

    opened by pcicales 3
Releases(0.8.6)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization

Iterative Training: Finding Binary Weight Deep Neural Networks with Layer Binarization This repository contains the source code for the paper (link wi

Rakuten Group, Inc. 0 Nov 19, 2021
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
Baseline and template code for node21 detection track

Nodule Detection Algorithm This codebase implements a baseline model, Faster R-CNN, for the nodule detection track in NODE21. It contains all necessar

node21challenge 11 Jan 15, 2022