[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Overview

PG-MORL

This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control (ICML 2020).

In this paper, we propose an evolutionary learning algorithm to compute a high-quality and dense Pareto solutions for multi-objective continuous robot control problems. We also design seven multi-objective continuous control benchmark problems based on Mujoco, which are also included in this repository. This repository also contains the code for the baseline algorithms in the paper.

teaser

Installation

Prerequisites

  • Operating System: tested on Ubuntu 16.04 and Ubuntu 18.04.
  • Python Version: >= 3.7.4.
  • PyTorch Version: >= 1.3.0.
  • MuJoCo : install mujoco and mujoco-py of version 2.0 by following the instructions in mujoco-py.

Install Dependencies

You can either install the dependencies in a conda virtual env (recomended) or manually.

For conda virtual env installation, simply create a virtual env named pgmorl by:

conda env create -f environment.yml

If you prefer to install all the dependencies by yourself, you could open environment.yml in editor to see which packages need to be installed by pip.

Run the Code

The training related code are in the folder morl. We provide the scripts in scrips folder to run our algorithm/baseline algorithms on each problem described in the paper, and also provide several visualization scripts in scripts/plot folder for you to visualize the computed Pareto policies and the training process.

Precomputed Pareto Results

While you can run the training code the compute the Pareto policies from scratch by following the training steps below, we also provide the precomputed Pareto results for each problem. You can download them for each problem separately in this google drive link and directly visualize them with the visualization instructions to play with the results. After downloading the precomputed results, you can unzip it, create a results folder under the project root directory, and put the downloaded file inside.

Benchmark Problems

We design seven multi-objective continuous control benchmark problems based on Mujoco simulation, including Walker2d-v2, HalfCheetah-v2, Hopper-v2, Ant-v2, Swimmer-v2, Humanoid-v2, and Hopper-v3. A suffix of -v3 indicates a three-objective problem. The reward (i.e. objective) functions in each problem are designed to have similar scales. All environments code can be found in environments/mujoco folder. To avoid conflicting to the original mujoco environment names, we add a MO- prefix to the name of each environment. For example, the environment name for Walker2d-v2 is MO-Walker2d-v2.

Train

The main entrance of the training code is at morl/run.py. We provide a training script in scripts folder for each problem for you to easily start with. You can just follow the following steps to see how to run the training for each problem by each algorithm (our algorithm and baseline algorithms).

  • Enter the project folder

    cd PGMORL
    
  • Activate the conda env:

    conda activate pgmorl
    
  • To run our algorithm on Walker2d-v2 for a single run:

    python scripts/walker2d-v2.py --pgmorl --num-seeds 1 --num-processes 1
    

    You can also set other flags as arguments to run the baseline algorithms (e.g. --ra, --moead, --pfa, --random). Please refer to the python scripts for more details about the arguments.

  • By default, the results are stored in results/[problem name]/[algorithm name]/[seed idx].

Visualization

  • We provide a script to visualize the computed/downloaded Pareto results.

    python scripts/plot/ep_obj_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    You can replace MO-Walker2d-v2 to your problem name, and replace the ./results/Walker2d-v2/pgmorl/0 by the path to your stored results.

    It will show a plot of the computed Pareto policies in the performance space. By double-click the point in the plot, it will automatically open a new window and render the simulation for the selected policy.

  • We also provide a script to help you visualize the evolution process of the policy population.

    python scripts/plot/training_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    It will plot the policy population (gray points) in each generation with some other useful information. The black points are the policies on the Pareto front, the green circles are the selected policies to be optimized in next generation, the red points are the predicted offsprings and the green points are the real offsprings. You can interact with the plot with the keyboard. For example, be pressing left/right, you can evolve the policy population by generation. You can refer to the plot scripts for the full description of the allowable operations.

Reproducibility

We run all our experiments on VM instances with 96 Intel Skylake vCPUs and 86.4G memory on Google Cloud Platform without GPU.

Acknowledgement

We use the implementation of pytorch-a2c-ppo-acktr-gail as the underlying PPO implementation and modify it into our Multi-Objective Policy Gradient algorithm.

Citation

If you find our paper or code is useful, please consider citing:

@inproceedings{xu2020prediction,
  title={Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control},
  author={Xu, Jie and Tian, Yunsheng and Ma, Pingchuan and Rus, Daniela and Sueda, Shinjiro and Matusik, Wojciech},
  booktitle={Proceedings of the 37th International Conference on Machine Learning},
  year={2020}
}
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
A framework to train language models to learn invariant representations.

Invariant Language Modeling Implementation of the training for invariant language models. Motivation Modern pretrained language models are critical co

6 Nov 16, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

CenterGroup This the official implementation of our ICCV 2021 paper The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person P

Dynamic Vision and Learning Group 43 Dec 25, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022