[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

Overview

PG-MORL

This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control (ICML 2020).

In this paper, we propose an evolutionary learning algorithm to compute a high-quality and dense Pareto solutions for multi-objective continuous robot control problems. We also design seven multi-objective continuous control benchmark problems based on Mujoco, which are also included in this repository. This repository also contains the code for the baseline algorithms in the paper.

teaser

Installation

Prerequisites

  • Operating System: tested on Ubuntu 16.04 and Ubuntu 18.04.
  • Python Version: >= 3.7.4.
  • PyTorch Version: >= 1.3.0.
  • MuJoCo : install mujoco and mujoco-py of version 2.0 by following the instructions in mujoco-py.

Install Dependencies

You can either install the dependencies in a conda virtual env (recomended) or manually.

For conda virtual env installation, simply create a virtual env named pgmorl by:

conda env create -f environment.yml

If you prefer to install all the dependencies by yourself, you could open environment.yml in editor to see which packages need to be installed by pip.

Run the Code

The training related code are in the folder morl. We provide the scripts in scrips folder to run our algorithm/baseline algorithms on each problem described in the paper, and also provide several visualization scripts in scripts/plot folder for you to visualize the computed Pareto policies and the training process.

Precomputed Pareto Results

While you can run the training code the compute the Pareto policies from scratch by following the training steps below, we also provide the precomputed Pareto results for each problem. You can download them for each problem separately in this google drive link and directly visualize them with the visualization instructions to play with the results. After downloading the precomputed results, you can unzip it, create a results folder under the project root directory, and put the downloaded file inside.

Benchmark Problems

We design seven multi-objective continuous control benchmark problems based on Mujoco simulation, including Walker2d-v2, HalfCheetah-v2, Hopper-v2, Ant-v2, Swimmer-v2, Humanoid-v2, and Hopper-v3. A suffix of -v3 indicates a three-objective problem. The reward (i.e. objective) functions in each problem are designed to have similar scales. All environments code can be found in environments/mujoco folder. To avoid conflicting to the original mujoco environment names, we add a MO- prefix to the name of each environment. For example, the environment name for Walker2d-v2 is MO-Walker2d-v2.

Train

The main entrance of the training code is at morl/run.py. We provide a training script in scripts folder for each problem for you to easily start with. You can just follow the following steps to see how to run the training for each problem by each algorithm (our algorithm and baseline algorithms).

  • Enter the project folder

    cd PGMORL
    
  • Activate the conda env:

    conda activate pgmorl
    
  • To run our algorithm on Walker2d-v2 for a single run:

    python scripts/walker2d-v2.py --pgmorl --num-seeds 1 --num-processes 1
    

    You can also set other flags as arguments to run the baseline algorithms (e.g. --ra, --moead, --pfa, --random). Please refer to the python scripts for more details about the arguments.

  • By default, the results are stored in results/[problem name]/[algorithm name]/[seed idx].

Visualization

  • We provide a script to visualize the computed/downloaded Pareto results.

    python scripts/plot/ep_obj_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    You can replace MO-Walker2d-v2 to your problem name, and replace the ./results/Walker2d-v2/pgmorl/0 by the path to your stored results.

    It will show a plot of the computed Pareto policies in the performance space. By double-click the point in the plot, it will automatically open a new window and render the simulation for the selected policy.

  • We also provide a script to help you visualize the evolution process of the policy population.

    python scripts/plot/training_visualize_2d.py --env MO-Walker2d-v2 --log-dir ./results/Walker2d-v2/pgmorl/0/
    

    It will plot the policy population (gray points) in each generation with some other useful information. The black points are the policies on the Pareto front, the green circles are the selected policies to be optimized in next generation, the red points are the predicted offsprings and the green points are the real offsprings. You can interact with the plot with the keyboard. For example, be pressing left/right, you can evolve the policy population by generation. You can refer to the plot scripts for the full description of the allowable operations.

Reproducibility

We run all our experiments on VM instances with 96 Intel Skylake vCPUs and 86.4G memory on Google Cloud Platform without GPU.

Acknowledgement

We use the implementation of pytorch-a2c-ppo-acktr-gail as the underlying PPO implementation and modify it into our Multi-Objective Policy Gradient algorithm.

Citation

If you find our paper or code is useful, please consider citing:

@inproceedings{xu2020prediction,
  title={Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control},
  author={Xu, Jie and Tian, Yunsheng and Ma, Pingchuan and Rus, Daniela and Sueda, Shinjiro and Matusik, Wojciech},
  booktitle={Proceedings of the 37th International Conference on Machine Learning},
  year={2020}
}
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022