Official PyTorch implementation of "The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation" (ICCV 21).

Overview

CenterGroup

This the official implementation of our ICCV 2021 paper

The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation,
Method Visualization Guillem Brasó, Nikita Kister, Laura Leal-Taixé
We introduce CenterGroup, an attention-based framework to estimate human poses from a set of identity-agnostic keypoints and person center predictions in an image. Our approach uses a transformer to obtain context-aware embeddings for all detected keypoints and centers and then applies multi-head attention to directly group joints into their corresponding person centers. While most bottom-up methods rely on non-learnable clustering at inference, CenterGroup uses a fully differentiable attention mechanism that we train end-to-end together with our keypoint detector. As a result, our method obtains state-of-the-art performance with up to 2.5x faster inference time than competing bottom-up methods.

@article{Braso_2021_ICCV,
    author    = {Bras\'o, Guillem and Kister, Nikita and Leal-Taix\'e, Laura},
    title     = {The Center of Attention: Center-Keypoint Grouping via Attention for Multi-Person Pose Estimation},
    journal = {ICCV},
    year      = {2021}
}

Main Results

With the code contained in this repo, you should be able to reproduce the following results.

Results on COCO val2017

Method Detector Multi-Scale Test Input size AP AP.5 AP .75 AP (M) AP (L)
CenterGroup HigherHRNet-w32 512 69.0 87.7 74.4 59.9 75.3
CenterGroup HigherHRNet-w48 640 71.0 88.7 76.5 63.1 75.2
CenterGroup HigherHRNet-w32 512 71.9 89.0 78.0 63.7 77.4
CenterGroup HigherHRNet-w48 640 73.3 89.7 79.2 66.4 76.7

Results on COCO test2017

Method Detector Multi-Scale Test Input size AP AP .5 AP .75 AP (M) AP (L)
CenterGroup HigherHRNet-w32 512 67.6 88.6 73.6 62.0 75.6
CenterGroup HigherHRNet-w48 640 69.5 89.7 76.0 65.0 76.2
CenterGroup HigherHRNet-w32 512 70.3 90.0 76.9 65.4 77.5
CenterGroup HigherHRNet-w48 640 71.4 90.5 78.1 67.2 77.5

Results on CrowdPose test

Method Detector Multi-Scale Test Input size AP AP .5 AP .75 AP (E) AP (M) AP (H)
CenterGroup HigherHRNet-w48 640 67.6 87.6 72.7 74.2 68.1 61.1
CenterGroup HigherHRNet-w48 640 70.3 89.1 75.7 77.3 70.8 63.2

Installation

Please see docs/INSTALL.md

Model Zoo

Please see docs/MODEL_ZOO.md

Evaluation

To evaluate a model you have to specify its configuration file, its checkpoint, and the number of GPUs you want to use. All of our configurations and checkpoints are available here) For example, to run CenterGroup with a HigherHRNet32 detector and a single GPU you can run the following:

NUM_GPUS=1
./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234

If you want to use multi-scale testing, please add the --multi-scale flag, e.g.:

./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234 --multi-scale

You can also modify any other config entry with the --cfg-options entry. For example, to disable flip-testing, which is used by default, you can run:

./tools/dist_test.sh configs/centergroup2/coco/higherhrnet_w32_coco_512x512 models/centergroup/centergroup_higherhrnet_w32_coco_512x512.pth $NUM_GPUS 1234 --cfg-options model.test_cfg.flip_test=False

You may need to modify the checkpoint's path, depending on where you downloaded it, and the entry data_root in the config file, depending on where you stored your data.

Training HigherHRNet with Centers

TODO

Training CenterGroup

TODO

Demo

TODO

Acknowledgements

Our code is based on mmpose, which reimplemented HigherHRNet's work. We thank the authors of these codebases for their great work!

Owner
Dynamic Vision and Learning Group
Dynamic Vision and Learning Group
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
🐦 Opytimizer is a Python library consisting of meta-heuristic optimization techniques.

Opytimizer: A Nature-Inspired Python Optimizer Welcome to Opytimizer. Did you ever reach a bottleneck in your computational experiments? Are you tired

Gustavo Rosa 546 Dec 31, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022