PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Related tags

Deep LearningESFW
Overview

Edge-Selective Feature Weaving for Point Cloud Matching

This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching https://arxiv.org/pdf/2202.02149v1.pdf.

Note

Our code is created based on https://github.com/ZENGYIMING-EAMON/CorrNet3D

Installation

conda create --name corrnet3d python=3.8
conda activate corrnet3d
pip install pytorch-lightning==1.1.6
pip install --upgrade https://github.com/unlimblue/KNN_CUDA/releases/download/0.2/KNN_CUDA-0.2-py3-none-any.whl
pip install "git+git://github.com/erikwijmans/Pointnet2_PyTorch.git#egg=pointnet2_ops&subdirectory=pointnet2_ops_lib"
conda install torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install h5py
pip install tables
pip install matplotlib
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org whl/torch-1.10.0+cu102.html

Dockerfile

You can use my docker file

docker build ./ -t {image_name}

Datasets

Download from https://github.com/ZENGYIMING-EAMON/CorrNet3D

Train

uncomment 'cli_main()' in lit_corrnet3d_ESFW.py
python lit_corrnet3d_ESFW.py --batch_size=10 --data_dir=./trainset.h5 --test_data_dir=./testset.h5 --num_gpus 
   

   

Test

To test on the whole testing set, run:

uncomment 'cli_main_test_()' in lit_corrnet3d_ESFW.py
python lit_corrnet3d_ESFW.py --batch_size=1 --ckpt_user=
   
     --data_dir=./trainset.h5 --test_data_dir=./testset.h5 -- num_gpus 
    

    
   

How to cite

@article{yanagi2022edge,
  title={Edge-selective feature weaving for point cloud matching},
  author={Zhou, Wengang and Li, Houqiang and Tian, Qi},
  author={Yanagi, Rintaro and Atsushi, Hashimoto and Shusaku, Sone and Naoya, Chiba and Jiaxin, Ma and Yoshitaka, Ushiku},
  journal={arXiv preprint arXiv:2202.02149},
  year={2021}
}
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Record radiologists' eye gaze when they are labeling images.

Record radiologists' eye gaze when they are labeling images. Read for installation, usage, and deep learning examples. Why use MicEye Versatile As a l

24 Nov 03, 2022
A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Kangneng Zhou 13 Sep 27, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
TensorFlow implementation of "Attention is all you need (Transformer)"

[TensorFlow 2] Attention is all you need (Transformer) TensorFlow implementation of "Attention is all you need (Transformer)" Dataset The MNIST datase

YeongHyeon Park 4 Jan 05, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Start-to-finish tutorial for interactive music co-creation in PyTorch and Tensorflow.js

Chris Donahue 98 Dec 14, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022