Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Overview

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification (2021) by Hai Phan and Anh Nguyen.

If you use this software, please consider citing:

@article{hai2021deepface,
  title={DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification},
  author={Hai Phan, Anh Nguyen},
  journal={arXiv preprint arXiv:2112.04016},
  year={2021}
}

1. Requirements

Python >= 3.5
Pytorch > 1.0
Opencv >= 3.4.4
pip install tqmd

2. Download datasets and pretrained models

  1. Download LFW, out-of-distribution (OOD) LFW test sets, and pretrained models: Google Drive

  2. Create the following folders:

mkdir data
mkdir pretrained
  1. Extract LFW datasets (e.g. lfw_crop_96x112.tar.gz) to data/
  2. Copy models (e.g. resnet18_110.pth) to pretrained/

3. How to run

3.1 Run examples

  • Run testing LFW images

    • -mask, -sunglass, -crop: flags for using corresponding OOD query images (i.e., faces with masks or sunglasses or randomly-cropped images).
    bash run_test.sh
    
  • Run demo: The demo gives results of top-5 images of stage 1 and stage 2 (including flow visualization of EMD).

    • -mask: image retrieval using a masked-face query image given a gallery of normal LFW images.
    • -sunglass and -crop: similar to the setup of -mask.
    • The results will be saved in the results/demo directory.
    bash run_demo.sh
    
  • Run retrieval using the full LFW gallery

    • Set the argument args.data_folder to data in .sh files.

3.2 Reproduce results

  • Make sure lfw-align-128 and lfw-align-128-crop70 dataset in data/ directory (e.g. data/lfw-align-128-crop70), ArcFace [2] model resnet18_110.pth in pretrained/ directory (e.g. pretrained/resnet18_110.pth). Run the following commands to reproduce the Table 1 results in our paper.

    • Arguments:

      • Methods can be apc, uniform, or sc
      • -l: 4 or 8 for 4x4 and 8x8 respectively.
      • -a: alpha parameter mentioned in the paper.
    • Normal LFW with 1680 classes:

    python test_face.py -method apc -fm arcface -d lfw_1680 -a -1 -data_folder data -l 4
    
    • LFW-crop:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -crop 
    
    • Note: The full LFW dataset have 5,749 people for a total of 13,233 images; however, only 1,680 people have two or more images (See LFW for details). However, in our normal LFW dataset, the identical images will not be considered in face identification. So, the difference between lfw and lfw_1680 is that the lfw setup uses the full LFW (including people with a single image) but the lfw_1680 uses only 1,680 people who have two or more images.
  • For other OOD datasets, run the following command:

    • LFW-mask:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -mask 
    
    • LFW-sunglass:
    python test_face.py -method apc -fm arcface -d lfw -a 0.7 -data_folder data -l 4 -sunglass 
    

3.3 Run visualization with two images

python visualize_faces.py -method [methods] -fm [face models] -model_path [model dir] -in1 [1st image] -in2 [2nd image] -weight [1/0: showing weight heatmaps] 

The results are in results/flow and results/heatmap (if -weight flag is on).

3.4 Use your own images

  1. Facial alignment. See align_face.py for details.
pip install scikit-image
pip install face-alignment
  • For making face alignment with size of 160x160 for Arcface (128x128) and FaceNet (160x160), the reference points are as follow (see function alignment in align_face.py).
ref_pts = [ [61.4356, 54.6963],[118.5318, 54.6963], [93.5252, 90.7366],[68.5493, 122.3655],[110.7299, 122.3641]]
crop_size = (160, 160)
  1. Create a folder including all persons (folders: name of person) and put it to '/data'
  2. Create a txt file with format: [image_path],[label] of that folder (See lfw file for details)
  3. Modify face loader: Add your txt file in function: get_face_dataloader.

4. License

MIT

5. References

  1. W. Zhao, Y. Rao, Z. Wang, J. Lu, Zhou. Towards interpretable deep metric learning with structural matching, ICCV 2021 DIML
  2. J. Deng, J. Guo, X. Niannan, and StefanosZafeiriou. Arcface: Additive angular margin loss for deepface recognition, CVPR 2019 Arcface Pytorch
  3. H. Wang, Y. Wang, Z. Zhou, X. Ji, DihongGong, J. Zhou, Z. Li, W. Liu. Cosface: Large margin cosine loss for deep face recognition, CVPR 2018 CosFace Pytorch
  4. F. Schroff, D. Kalenichenko, J. Philbin. Facenet: A unified embedding for face recognition and clustering. CVPR 2015 FaceNet Pytorch
  5. L. Weiyang, W. Yandong, Y. Zhiding, L. Ming, R. Bhiksha, S. Le. SphereFace: Deep Hypersphere Embedding for Face Recognition, CVPR 2017 sphereface, sphereface pytorch
  6. Chi Zhang, Yujun Cai, Guosheng Lin, Chunhua Shen. Deepemd: Differentiable earth mover’s distance for few-shotlearning, CVPR 2020 paper
Owner
Anh M. Nguyen
Learning in the deep...
Anh M. Nguyen
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Woosung Choi 63 Nov 14, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
EfficientNetv2 TensorRT int8

EfficientNetv2_TensorRT_int8 EfficientNetv2模型实现来自https://github.com/d-li14/efficientnetv2.pytorch 环境配置 ubuntu:18.04 cuda:11.0 cudnn:8.0 tensorrt:7

34 Apr 24, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022