This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

Overview

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting

Python Pytorch

Project Page | YouTube | Paper

This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

Environment

conda install pytorch torchvision cudatoolkit=<your cuda version>
conda install pyyaml scikit-image scikit-learn opencv
pip install -r requirements.txt

Data

Mixamo

Mixamo is a synthesized 3D character animation dataset.

  1. Download mixamo data here.
  2. Extract under data/mixamo

For directions for downloading 3D Mixamo data please refer to this link.

SoloDance

SoloDance is a collection of dancing videos on youtube. We use DensePose to extract skeleton sequences from these videos for training.

  1. Download the extracted skeleton sequences here.
  2. Extract under data/solo_dance

The original videos can be downloaded here.

Preprocessing

run sh scripts/preprocess.sh to preprocess the two datasets above.

Pretrained model

Download the pretrained models here.

Inference

  1. For Skeleton Extraction, please consider using a pose estimation library such as Detectron2. We require the input skeleton sequences to be in the format of a numpy .npy file:

    • The file should contain an array with shape 15 x 2 x length.
    • The first dimension (15) corresponds the 15 body joint defined here.
    • The second dimension (2) corresponds to x and y coordinates.
    • The third dimension (length) is the temporal dimension.
  2. For Motion Retargeting Network, we provide the sample command for inference:

python infer_pair.py 
--config configs/transmomo.yaml 
--checkpoint transmomo_mixamo_36_800_24/checkpoints/autoencoder_00200000.pt # replace with actual path
--source a.npy  # replace with actual path
--target b.npy  # replace with actual path
--source_width 1280 --source_height 720 
--target_height 1920 --target_width 1080
  1. For Skeleton-to-Video Rendering, please refer to Everybody Dance Now.

Training

To train the Motion Retargeting Network, run

python train.py --config configs/transmomo.yaml

To train on the SoloDance dataest, run

python train.py --config configs/transmomo_solo_dance.yaml

Testing

For testing motion retargeting MSE, first generate the motion-retargeted motions with

python test.py
--config configs/transmomo.yaml # replace with the actual config used for training
--checkpoint transmomo_mixamo_36_800_24/checkpoints/autoencoder_00200000.pt
--out_dir transmomo_mixamo_36_800_24_results # replace actual path to output directory

And then compute MSE by

python scripts/compute_mse.py 
--in_dir transmomo_mixamo_36_800_24_results # replace with the previous output directory

Project Structure

transmomo.pytorch
├── configs - configuration files
├── data - place for storing data
├── docs - documentations
├── lib
│   ├── data.py - datasets and dataLoaders
│   ├── networks - encoders, decoders, discriminators, etc.
│   ├── trainer.py - training pipeline
│   ├── loss.py - loss functions
│   ├── operation.py - operations, e.g. rotation, projection, etc.
│   └── util - utility functions
├── out - place for storing output
├── infer_pair.py - perform motion retargeting
├── render_interpolate.py - perform motion and body interpolation
├── scripts - scripts for data processing and experiments
├── test.py - test MSE
└── train.py - main entrance for training

TODOs

  • Detailed documentation

  • Add example files

  • Release in-the-wild dancing video dataset (unannotated)

  • Tool for visualizing Mixamo test error

  • Tool for converting keypoint formats

Citation

Z. Yang*, W. Zhu*, W. Wu*, C. Qian, Q. Zhou, B. Zhou, C. C. Loy. "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting." IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. (* indicates equal contribution.)

BibTeX:

@inproceedings{transmomo2020,
  title={TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting},
  author={Yang, Zhuoqian and Zhu, Wentao and Wu, Wayne and Qian, Chen and Zhou, Qiang and Zhou, Bolei and Loy, Chen Change},
  booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2020}
}

Acknowledgement

This repository is partly based on Rundi Wu's Learning Character-Agnostic Motion for Motion Retargeting in 2D and Xun Huang's MUNIT: Multimodal UNsupervised Image-to-image Translation. The skeleton-to-rendering part is based on Everybody Dance Now. We sincerely thank them for their inspiration and contribution to the community.

Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023