Learning Chinese Character style with conditional GAN

Overview

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks

animation

Introduction

Learning eastern asian language typefaces with GAN. zi2zi(字到字, meaning from character to character) is an application and extension of the recent popular pix2pix model to Chinese characters.

Details could be found in this blog post.

Network Structure

Original Model

alt network

The network structure is based off pix2pix with the addition of category embedding and two other losses, category loss and constant loss, from AC-GAN and DTN respectively.

Updated Model with Label Shuffling

alt network

After sufficient training, d_loss will drop to near zero, and the model's performance plateaued. Label Shuffling mitigate this problem by presenting new challenges to the model.

Specifically, within a given minibatch, for the same set of source characters, we generate two sets of target characters: one with correct embedding labels, the other with the shuffled labels. The shuffled set likely will not have the corresponding target images to compute L1_Loss, but can be used as a good source for all other losses, forcing the model to further generalize beyond the limited set of provided examples. Empirically, label shuffling improves the model's generalization on unseen data with better details, and decrease the required number of characters.

You can enable label shuffling by setting flip_labels=1 option in train.py script. It is recommended that you enable this after d_loss flatlines around zero, for further tuning.

Gallery

Compare with Ground Truth

compare

Brush Writing Fonts

brush

Cursive Script (Requested by SNS audience)

cursive

Mingchao Style (宋体/明朝体)

gaussian

Korean

korean

Interpolation

animation

Animation

animation animation

easter egg

How to Use

Step Zero

Download tons of fonts as you please

Requirement

  • Python 2.7
  • CUDA
  • cudnn
  • Tensorflow >= 1.0.1
  • Pillow(PIL)
  • numpy >= 1.12.1
  • scipy >= 0.18.1
  • imageio

Preprocess

To avoid IO bottleneck, preprocessing is necessary to pickle your data into binary and persist in memory during training.

First run the below command to get the font images:

python font2img.py --src_font=src.ttf
                   --dst_font=tgt.otf
                   --charset=CN 
                   --sample_count=1000
                   --sample_dir=dir
                   --label=0
                   --filter=1
                   --shuffle=1

Four default charsets are offered: CN, CN_T(traditional), JP, KR. You can also point it to a one line file, it will generate the images of the characters in it. Note, filter option is highly recommended, it will pre sample some characters and filter all the images that have the same hash, usually indicating that character is missing. label indicating index in the category embeddings that this font associated with, default to 0.

After obtaining all images, run package.py to pickle the images and their corresponding labels into binary format:

python package.py --dir=image_directories
                  --save_dir=binary_save_directory
                  --split_ratio=[0,1]

After running this, you will find two objects train.obj and val.obj under the save_dir for training and validation, respectively.

Experiment Layout

experiment/
└── data
    ├── train.obj
    └── val.obj

Create a experiment directory under the root of the project, and a data directory within it to place the two binaries. Assuming a directory layout enforce bettet data isolation, especially if you have multiple experiments running.

Train

To start training run the following command

python train.py --experiment_dir=experiment 
                --experiment_id=0
                --batch_size=16 
                --lr=0.001
                --epoch=40 
                --sample_steps=50 
                --schedule=20 
                --L1_penalty=100 
                --Lconst_penalty=15

schedule here means in between how many epochs, the learning rate will decay by half. The train command will create sample,logs,checkpoint directory under experiment_dir if non-existed, where you can check and manage the progress of your training.

Infer and Interpolate

After training is done, run the below command to infer test data:

python infer.py --model_dir=checkpoint_dir/ 
                --batch_size=16 
                --source_obj=binary_obj_path 
                --embedding_ids=label[s] of the font, separate by comma
                --save_dir=save_dir/

Also you can do interpolation with this command:

python infer.py --model_dir= checkpoint_dir/ 
                --batch_size=10
                --source_obj=obj_path 
                --embedding_ids=label[s] of the font, separate by comma
                --save_dir=frames/ 
                --output_gif=gif_path 
                --interpolate=1 
                --steps=10
                --uroboros=1

It will run through all the pairs of fonts specified in embedding_ids and interpolate the number of steps as specified.

Pretrained Model

Pretained model can be downloaded here which is trained with 27 fonts, only generator is saved to reduce the model size. You can use encoder in the this pretrained model to accelerate the training process.

Acknowledgements

Code derived and rehashed from:

License

Apache 2.0

Owner
Yuchen Tian
Born in the year of Snake, now stuck with Python.
Yuchen Tian
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
An all-in-one application to visualize multiple different local path planning algorithms

Table of Contents Table of Contents Local Planner Visualization Project (LPVP) Features Installation/Usage Local Planners Probabilistic Roadmap (PRM)

Abdur Javaid 47 Dec 30, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022