Testbed of AI Systems Quality Management

Overview

qunomon

Description

A testbed for testing and managing AI system qualities.

Demo

Sorry. Not deployment public server at alpha version.

Requirement

Installation prerequisites

Support os is Windows10 Pro and macOS.

  • Windows10 Pro 1909 later
  • macOS v10.15 later

Installation

Usage

1.launch

Execute the following command as root of this repository.

docker-compose up

2.access web browser

http://127.0.0.1:8888/

Development for windows

Installation

1.PackageManager

  • Launch powershell with administrator permission.

  • powershell

    Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))
    

2.Python

  • powershell
    cinst python --version=3.6.8 -y
    

Setup python virtual environment for Backend

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\backend
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r requirements_dev.txt

Setup python virtual environment for IP

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\integration-provider
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r constraints.txt

launch by without container

1.execute bat file

start_up.bat

2.checking web browser

http://127.0.0.1:8080/

3.checking Backend

  • powershell
    curl http://127.0.0.1:5000/qai-testbed/api/0.0.1/health-check
    

4.checking IP

  • powershell
    curl http://127.0.0.1:6000/qai-ip/api/0.0.1/health-check
    

Contribution

Bug reports and pull requests are welcome on GitHub at aistairc/qunomon.

Disclaimer

qunomon is an OSS and alpha version. so qunomon may cause damage to your system and data. You agree to use it at your own risk.

License

Apache License Version 2.0

Author

AIST

You might also like...
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Releases(0.1.15)
  • 0.1.15(Jun 25, 2021)

  • 0.1.14(Jun 8, 2021)

    Added

    #1462 SHAP AITの実装とテスト alyz_regression_shap_0.1 #1485 SHAP AIT plots_scatterの出力figにタイトル(カラムを対象)追加

    Fixed

    #1492 Dependabot alerts対応(urllib3) #1476 Dependabot alerts対応(TensorFlow2.4系から変更) #1465 AITパラメータ見直し(eval_adversarial_example_acc_test_tf2.3_0.1)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.13(May 26, 2021)

    Added

    #1434 クライテリア範囲外でTDを作成できないようにする(バックエンド) #1435 クライテリア範囲外でTDを作成できないようにする(フロントエンド) #1436 パラメータ範囲外でTDを作成できないようにする(フロントエンド) #1437 パラメータ範囲外でTDを作成できないようにする(バックエンド) #1438 インベントリチェック 警告ポップアップを表示する(フロントエンド) #1440 インベントリチェック ファイルフォーマットチェック(一般)

    Fixed

    #1423 AITパラメータ見直し(eval_dnn_coverage_tf1.13_0.1) #1425 AITパラメータ見直し(eval_mnist_acc_tf2.3_0.1) #1454 DependencyAlert解消(5/12)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.12(May 12, 2021)

    Added

    #1416 インベントリチェック ファイル存在チェック #1421 インベントリチェック TD実行時ハッシュチェック

    Fixed

    #1362 #1213の変更部分をテストコードに反映させる #1403 AIT発生エラー見直し AIT-SDK入れ替え #1432 GET TestRunnerでエンコードエラーログが出力される #1442 docker起動でインベントリ登録ができない #1447 DependencyAlert解消(5/10) #1452 pipインストールモジュールのバージョンを固定化する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.11(Apr 28, 2021)

    Added

    #1370 AITの更新 (AITのパラメータ上限下限を表示する) #1374 ait-installerの更新 (AITのパラメータ上限下限を表示する)

    Fixed

    #1402 AIT発生エラー見直し AIT-SDK修正 #1404 AIT発生エラー見直し IP修正 #1405 AIT発生エラー見直し バックエンド修正 #1406 AIT発生エラー見直し フロントエンド修正 #1416 AIT発生エラー見直し AIT-SDK修正(出力先フォルダがない場合に対応)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.10(Apr 14, 2021)

    Added

    #1349 [TF3]MLComponent一覧画面でMLComponentを削除できるようにしたい

    Fixed

    #1385 DependencyAlert解消(3/26) #1391 DependencyAlert解消(4/2) #1361 #1335 により変更された部分をWEB API仕様書に反映をさせる

    Source code(tar.gz)
    Source code(zip)
  • 0.1.9(Mar 26, 2021)

    Added

    #1335 AITのパラメータ上限下限を表示する #144 TestDescription一覧画面の日付指定をカレンダーを用いて行う機能の実装

    Fixed

    なし

    Source code(tar.gz)
    Source code(zip)
  • 0.1.8(Mar 12, 2021)

    Added

    #1212 TD詳細画面-グラフを複数選択して追加したい #1340 TD詳細画面でairflowのログダウンロードURLリンクを表示する #1342 グラフ複数選択時に未登録のものだけを登録したい #1347 [TF3]TD一覧画面でTDを削除できるようにしたい

    Fixed

    #1331 何も選択していない状態で「add to Report」ボタンを押下できてしまう #1337 活性化判定をcheckAddBTNActiveメソッドで対応させるよう処理を統一 #1345 [TD詳細画面]追加グラフの数チェック不整合 #1348 [TD編集画面1]TDの再編集時にTD名のテキストボックスが入力1文字ごとにフォーカスが外れる #1336 docker-compose実行時に、ait-installerが実行されてない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.7(Feb 26, 2021)

  • 0.1.6(Feb 12, 2021)

    Added

    #1200 AIF360の指標を取り込んだAITを作成する #1211 TD詳細画面-どのグラフを選択中か分かるようにしたい #1248 ait.manifest.jsonのreport.measuresにminとmaxを書く

    Fixed

    #1300 jupyter新バージョン3.X以後、AITのset_ait_descriptionにUnicodeEncodeError (漢字、など) #1305 TDでのレポート使用グラフを一つ削除すると、ソートがリセットされる #1312 Dependency alert解消(2/4)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.5(Jan 29, 2021)

    Added

    #1199 TDの品質指標に何を入れれば良いか分かりにくい問題を解消する #1213 [サマリ]manifestのresources,downloadsからpathを削除する

    Fixed

    #1262 eval_bdd100k_aicc_tf2.3のリソース「all_label_accuracy_csv」がタイプ「text」になっている #1272 ローカルにAITイメージがない状態で実行するとairflowでエラーになる #1277 Dependabot alerts解消(2021/1/15)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.4(Jan 15, 2021)

    Added

    #1213 manifestのresources,downloadsからpathを削除する

    Fixed

    #1208 レポートのレーダーチャートが、品質特性2以下だと数量が判別できない #1254 レポートのレーダーチャートの表示範囲が5で固定 #1260 Dependabot alerts解消(2021/1/8)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(Dec 25, 2020)

    Added

    #1166 qlib新規作成

    Fixed

    #1183 TestDescriptionの中で大量の画像を扱うと画面が応答しない #1198 フロントエンド誤字修正 #1203 AITでresoucesに大量のデータをセットすると、TestDescription詳細画面やレポート出力が応答しない #1242 measures無しのAITを登録するとQualityDimensionが反映されない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.2(Dec 10, 2020)

    Added

    #1171 インベントリの選択方法を改善する #1173 レポートのサマリでTD0件の品質特性は出力対象にしないようにする

    Fixed

    #1187 レポート出力時に2.1のレーダーチャートの項目名が長すぎると途中で切れる #1184 airflowのdocker buildが失敗する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Nov 27, 2020)

    Added

    #1071 確認ダイアログの多言語化対応 #1126 作成したAITをtestbedにdeployするツールが必要

    Fixed

    #1099 ブラウザバック、リロードでエラーが発生する画面がある #1123 内部品質名称を英語に変更する #1115 2つ以上あるmeasureのうち、一つだけチェックをいれてTDを作成するとエラーが発生する #1125 READMEの記述を修正(qai-testbed → qunomon) #1163 dag配下のフォルダを削除する #1156 docker-airflowのDockerfileの修正 #1157 Github security alert への対応

    Source code(tar.gz)
    Source code(zip)
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022