Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

Related tags

Deep LearningRecycleD
Overview

RecycleD

Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM Multimedia 2021 Brave New Ideas (BNI) Track.

Brief Introduction

The core idea of RecycleD is to reuse the pre-trained discriminator in SR WGAN to directly assess the image perceptual quality.

overall_pipeline

In addition, we use the Salient Object Detection (SOD) networks and Image Residuals to produce weight matrices to improve the PatchGAN discriminator.

Requirements

  • Python 3.6
  • NumPy 1.17
  • PyTorch 1.2
  • torchvision 0.4
  • tensorboardX 1.4
  • scikit-image 0.16
  • Pillow 5.2
  • OpenCV-Python 3.4
  • SciPy 1.4

Datasets

For Training

We adopt the commonly used DIV2K as the training set to train SR WGAN.
For training, we use the HR images in "DIV2K/DIV2K_train_HR/", and LR images in "DIV2K/DIV2K_train_LR_bicubic/X4/". (The upscale factor is x4.)
For validation, we use the Set5 & Set14 datasets. You can download these benchmark datasets from LapSRN project page or My Baidu disk with password srbm.

For Test

We use PIPAL, Ma's dataset, BAPPS-Superres as super-resolved image quality datasets.
We use LIVE-itW and KonIQ-10k as artificially distorted image quality datasets.

Getting Started

See the directory shell.

Pre-trained Models

If you want to test the discriminators, you need to download the pre-trained models, and put them into the directory pretrained_models.
Meanwhile, you may need to modify the model location options in the shell scripts so that these model files can be loaded correctly.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Citation

If you find this repository is useful for your research, please cite the following paper.

(1) BibTeX:

(2) ACM Reference Format:

Yunan Zhu, Haichuan Ma, Jialun Peng, Dong Liu, and Zhiwei Xiong. 2021.
Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN.
In Proceedings of the 29th ACM International Conference on Multimedia (MM ’21), October 20–24, 2021, Virtual Event, China.
ACM, NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3474085.3479234

About Brave New Ideas (BNI) Track

Following paragraphs were directly excerpted from the Call for Brave New Ideas of ACM Multimedia 2021.

The Brave New Ideas (BNI) Track of ACM Multimedia 2021 is calling for innovative papers that open up new vistas for multimedia research and stimulate activity towards addressing new, long term challenges of interest to the multimedia research community. Submissions should be scientifically rigorous and also introduce fresh perspectives.

We understand "brave" to mean that a paper (or an area of research introduced by the paper) has great potential for high impact. For the proposed algorithm, technology or application to be understood as high impact, the authors should be able to argue that their proposal is important to solving problems, to supporting new perspectives, or to providing services that directly affect people's lives.

We understand "new" to mean that an idea has not yet been proposed before. The component techniques and technologies may exist, but their integration must be novel.

BNI FAQ
1.What type of papers are suitable for the BNI track?
The BNI track invites papers with brave and new ideas, where "brave" means “out-of-the-box thinking” ideas that may generate high impact and "new" means ideas not yet been proposed before. The highlight of BNI 2021 is "Multimedia for Social Good", where innovative research showcasing the benefit to the general public are encouraged.
2.What is the format requirement for BNI papers?
The paper format requirement is consistent with that of the regular paper.
4.How selective is the BNI track?
The BNI track is at least as competitive as the regular track. A BNI paper is regarded as respectful if not more compared to a regular paper. It is even more selective than the regular one with the acceptance rate at ~10% in previous years.
6.How are the BNI papers published?
The BNI papers are officially published in the conference proceeding.

Acknowledgements

This code borrows partially from the repo BasicSR.
We use the SOD networks from BASNet and U-2-Net.

Owner
Yunan Zhu
MEng student at EEIS, USTC. [email protected]
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Official code for the paper: Deep Graph Matching under Quadratic Constraint (CVPR 2021)

QC-DGM This is the official PyTorch implementation and models for our CVPR 2021 paper: Deep Graph Matching under Quadratic Constraint. It also contain

Quankai Gao 55 Nov 14, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022