It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Overview

CLIP-ONNX

It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Usage

Install clip-onnx module and requirements first. Use this trick

!pip install git+https://github.com/Lednik7/CLIP-ONNX.git

Example in 3 steps

  1. Download CLIP image from repo
!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Load standard CLIP model, image, text on cpu
import clip
from PIL import Image

# onnx cannot work with cuda
model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
# batch first
image = preprocess(Image.open("CLIP.png")).unsqueeze(0) # [1, 3, 224, 224]
text = clip.tokenize(["a diagram", "a dog", "a cat"]) # [3, 77]
  1. Create CLIP-ONNX object to convert model to onnx
from clip_onnx import clip_onnx, attention
clip.model.ResidualAttentionBlock.attention = attention

visual_path = "clip_visual.onnx"
textual_path = "clip_textual.onnx"

# ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
onnx_model = clip_onnx(model, providers=["CPUExecutionProvider"], # cpu mode
                       visual_path=visual_path, textual_path=textual_path)
onnx_model.convert2onnx(image, text, verbose=True)
onnx_model.start_sessions()
  1. Use for standard CLIP API. Batch inference
image_features = onnx_model.encode_image(image)
text_features = onnx_model.encode_text(text)

logits_per_image, logits_per_text = onnx_model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.41456965 0.29270944 0.29272085]]

Enjoy the speed

Examples

See examples folder for more details
Some parts of the code were taken from the post. Thank you neverix for this notebook.

Comments
  • Can't use CUDAExecutionProvider

    Can't use CUDAExecutionProvider

    Hey, I'm trying to use the code on GPU and I encountered 2 problems:

    1. when running pip install git+https://github.com/Lednik7/CLIP-ONNX.git I got the following error (tried on multiple machines): ERROR: Could not find a version that satisfies the requirement torch==1.10.0+cu111 (from clip-onnx)

    I fixed it by installing that version of torch by myself. with pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html, and then running the rest of the installation.

    1. After I installed the package, I tried to run the example in the readme with CPUExecutionProvider and it worked fine, but when I'm trying to run it on GPU with CUDAExecutionProvider I get the following error message (again on different machines):

    2022-01-31 20:57:03.234399301 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met. 2022-01-31 20:57:03.872349008 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

    I can't figure out what is the problem. Any help?

    opened by YoadTew 13
  • Performance is inconsistent with the original model

    Performance is inconsistent with the original model

    Hi, thanks for providing this useful tool! However, I found that the result produced by the generated ONNX model is inconsistent with the original CLIP model. Here is the code I used to test the original model:

    model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
    
    image = preprocess(Image.open("CLIP.png")).unsqueeze(0).cpu() # [1, 3, 224, 224]
    text = clip.tokenize(["a diagram", "a dog", "a cat"]).cpu() # [3, 77]
    
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
    
    print("Label probs:", probs) 
    

    The result is: Label probs: [[0.9927937 0.00421069 0.00299573]]

    However, when using the onnx model, the result is: Label probs: [[0.41456965 0.29270944 0.29272085]].

    Could you help me with this? Thanks!

    opened by Cestlaviez 5
  • Error on installing the torch version in requirements.txt

    Error on installing the torch version in requirements.txt

    pip install git+https://github.com/Lednik7/CLIP-ONNX.git

    ERROR: Could not find a version that satisfies the requirement torch==1.11.0+cu113 (from versions: 1.0.0, 1.0.1, 1.0.1.post2, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0)
    ERROR: No matching distribution found for torch==1.11.0+cu113
    

    python version is 3.7.13

    opened by dingusagar 2
  • ERROR: No matching distribution found for onnxruntime==1.11

    ERROR: No matching distribution found for onnxruntime==1.11

    Hi, Thanks for the great work!

    I am having this error when I try to install the package.

    ERROR: No matching distribution found for onnxruntime==1.11

    Maybe we can update the requirements.txt?

    opened by wanliAlex 1
  • Replace the operator of

    Replace the operator of "torch.einsum"

    q, k, v = (torch.einsum("tbh, oh -> tbo", x, self.attn.in_proj_weight) + self.attn.in_proj_bias).contiguous().chunk( 3, dim=-1)

    @Lednik7 Thanks for your great work on Clip-ONNX. for the pytorch operator of "torch.einsum" , if we don't want to use this operator , do you have other codes to replace this operator? this operator is not friendly to some Inference engine, like NV TensorRT, so if you have other codes to replace einsum, that will be better

    opened by zhangnju 2
Owner
Gerasimov Maxim
16 y.o. Data Scientist. Graduated by Yandex Lyceum and Tinkoff Education
Gerasimov Maxim
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning

advantage-weighted-regression Implementation of Advantage-Weighted Regression: Simple and Scalable Off-Policy Reinforcement Learning, by Peng et al. (

Omar D. Domingues 1 Dec 02, 2021
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023