It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Overview

CLIP-ONNX

It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Usage

Install clip-onnx module and requirements first. Use this trick

!pip install git+https://github.com/Lednik7/CLIP-ONNX.git

Example in 3 steps

  1. Download CLIP image from repo
!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Load standard CLIP model, image, text on cpu
import clip
from PIL import Image

# onnx cannot work with cuda
model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
# batch first
image = preprocess(Image.open("CLIP.png")).unsqueeze(0) # [1, 3, 224, 224]
text = clip.tokenize(["a diagram", "a dog", "a cat"]) # [3, 77]
  1. Create CLIP-ONNX object to convert model to onnx
from clip_onnx import clip_onnx, attention
clip.model.ResidualAttentionBlock.attention = attention

visual_path = "clip_visual.onnx"
textual_path = "clip_textual.onnx"

# ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
onnx_model = clip_onnx(model, providers=["CPUExecutionProvider"], # cpu mode
                       visual_path=visual_path, textual_path=textual_path)
onnx_model.convert2onnx(image, text, verbose=True)
onnx_model.start_sessions()
  1. Use for standard CLIP API. Batch inference
image_features = onnx_model.encode_image(image)
text_features = onnx_model.encode_text(text)

logits_per_image, logits_per_text = onnx_model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.41456965 0.29270944 0.29272085]]

Enjoy the speed

Examples

See examples folder for more details
Some parts of the code were taken from the post. Thank you neverix for this notebook.

Comments
  • Can't use CUDAExecutionProvider

    Can't use CUDAExecutionProvider

    Hey, I'm trying to use the code on GPU and I encountered 2 problems:

    1. when running pip install git+https://github.com/Lednik7/CLIP-ONNX.git I got the following error (tried on multiple machines): ERROR: Could not find a version that satisfies the requirement torch==1.10.0+cu111 (from clip-onnx)

    I fixed it by installing that version of torch by myself. with pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html, and then running the rest of the installation.

    1. After I installed the package, I tried to run the example in the readme with CPUExecutionProvider and it worked fine, but when I'm trying to run it on GPU with CUDAExecutionProvider I get the following error message (again on different machines):

    2022-01-31 20:57:03.234399301 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met. 2022-01-31 20:57:03.872349008 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

    I can't figure out what is the problem. Any help?

    opened by YoadTew 13
  • Performance is inconsistent with the original model

    Performance is inconsistent with the original model

    Hi, thanks for providing this useful tool! However, I found that the result produced by the generated ONNX model is inconsistent with the original CLIP model. Here is the code I used to test the original model:

    model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
    
    image = preprocess(Image.open("CLIP.png")).unsqueeze(0).cpu() # [1, 3, 224, 224]
    text = clip.tokenize(["a diagram", "a dog", "a cat"]).cpu() # [3, 77]
    
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
    
    print("Label probs:", probs) 
    

    The result is: Label probs: [[0.9927937 0.00421069 0.00299573]]

    However, when using the onnx model, the result is: Label probs: [[0.41456965 0.29270944 0.29272085]].

    Could you help me with this? Thanks!

    opened by Cestlaviez 5
  • Error on installing the torch version in requirements.txt

    Error on installing the torch version in requirements.txt

    pip install git+https://github.com/Lednik7/CLIP-ONNX.git

    ERROR: Could not find a version that satisfies the requirement torch==1.11.0+cu113 (from versions: 1.0.0, 1.0.1, 1.0.1.post2, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0)
    ERROR: No matching distribution found for torch==1.11.0+cu113
    

    python version is 3.7.13

    opened by dingusagar 2
  • ERROR: No matching distribution found for onnxruntime==1.11

    ERROR: No matching distribution found for onnxruntime==1.11

    Hi, Thanks for the great work!

    I am having this error when I try to install the package.

    ERROR: No matching distribution found for onnxruntime==1.11

    Maybe we can update the requirements.txt?

    opened by wanliAlex 1
  • Replace the operator of

    Replace the operator of "torch.einsum"

    q, k, v = (torch.einsum("tbh, oh -> tbo", x, self.attn.in_proj_weight) + self.attn.in_proj_bias).contiguous().chunk( 3, dim=-1)

    @Lednik7 Thanks for your great work on Clip-ONNX. for the pytorch operator of "torch.einsum" , if we don't want to use this operator , do you have other codes to replace this operator? this operator is not friendly to some Inference engine, like NV TensorRT, so if you have other codes to replace einsum, that will be better

    opened by zhangnju 2
Owner
Gerasimov Maxim
16 y.o. Data Scientist. Graduated by Yandex Lyceum and Tinkoff Education
Gerasimov Maxim
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers This repository contains code to run experiments in the paper "Signal Stre

0 Jan 19, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
This project is a loose implementation of paper "Algorithmic Financial Trading with Deep Convolutional Neural Networks: Time Series to Image Conversion Approach"

Stock Market Buy/Sell/Hold prediction Using convolutional Neural Network This repo is an attempt to implement the research paper titled "Algorithmic F

Asutosh Nayak 136 Dec 28, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023