It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Overview

CLIP-ONNX

It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

Usage

Install clip-onnx module and requirements first. Use this trick

!pip install git+https://github.com/Lednik7/CLIP-ONNX.git

Example in 3 steps

  1. Download CLIP image from repo
!wget -c -O CLIP.png https://github.com/openai/CLIP/blob/main/CLIP.png?raw=true
  1. Load standard CLIP model, image, text on cpu
import clip
from PIL import Image

# onnx cannot work with cuda
model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
# batch first
image = preprocess(Image.open("CLIP.png")).unsqueeze(0) # [1, 3, 224, 224]
text = clip.tokenize(["a diagram", "a dog", "a cat"]) # [3, 77]
  1. Create CLIP-ONNX object to convert model to onnx
from clip_onnx import clip_onnx, attention
clip.model.ResidualAttentionBlock.attention = attention

visual_path = "clip_visual.onnx"
textual_path = "clip_textual.onnx"

# ['TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider']
onnx_model = clip_onnx(model, providers=["CPUExecutionProvider"], # cpu mode
                       visual_path=visual_path, textual_path=textual_path)
onnx_model.convert2onnx(image, text, verbose=True)
onnx_model.start_sessions()
  1. Use for standard CLIP API. Batch inference
image_features = onnx_model.encode_image(image)
text_features = onnx_model.encode_text(text)

logits_per_image, logits_per_text = onnx_model(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()

print("Label probs:", probs)  # prints: [[0.41456965 0.29270944 0.29272085]]

Enjoy the speed

Examples

See examples folder for more details
Some parts of the code were taken from the post. Thank you neverix for this notebook.

Comments
  • Can't use CUDAExecutionProvider

    Can't use CUDAExecutionProvider

    Hey, I'm trying to use the code on GPU and I encountered 2 problems:

    1. when running pip install git+https://github.com/Lednik7/CLIP-ONNX.git I got the following error (tried on multiple machines): ERROR: Could not find a version that satisfies the requirement torch==1.10.0+cu111 (from clip-onnx)

    I fixed it by installing that version of torch by myself. with pip install torch==1.10.0+cu111 torchvision==0.11.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html, and then running the rest of the installation.

    1. After I installed the package, I tried to run the example in the readme with CPUExecutionProvider and it worked fine, but when I'm trying to run it on GPU with CUDAExecutionProvider I get the following error message (again on different machines):

    2022-01-31 20:57:03.234399301 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met. 2022-01-31 20:57:03.872349008 [W:onnxruntime:Default, onnxruntime_pybind_state.cc:535 CreateExecutionProviderInstance] Failed to create CUDAExecutionProvider. Please reference https://onnxruntime.ai/docs/reference/execution-providers/CUDA-ExecutionProvider.html#requirements to ensure all dependencies are met.

    I can't figure out what is the problem. Any help?

    opened by YoadTew 13
  • Performance is inconsistent with the original model

    Performance is inconsistent with the original model

    Hi, thanks for providing this useful tool! However, I found that the result produced by the generated ONNX model is inconsistent with the original CLIP model. Here is the code I used to test the original model:

    model, preprocess = clip.load("ViT-B/32", device="cpu", jit=False)
    
    image = preprocess(Image.open("CLIP.png")).unsqueeze(0).cpu() # [1, 3, 224, 224]
    text = clip.tokenize(["a diagram", "a dog", "a cat"]).cpu() # [3, 77]
    
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    
    logits_per_image, logits_per_text = model(image, text)
    probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
    
    print("Label probs:", probs) 
    

    The result is: Label probs: [[0.9927937 0.00421069 0.00299573]]

    However, when using the onnx model, the result is: Label probs: [[0.41456965 0.29270944 0.29272085]].

    Could you help me with this? Thanks!

    opened by Cestlaviez 5
  • Error on installing the torch version in requirements.txt

    Error on installing the torch version in requirements.txt

    pip install git+https://github.com/Lednik7/CLIP-ONNX.git

    ERROR: Could not find a version that satisfies the requirement torch==1.11.0+cu113 (from versions: 1.0.0, 1.0.1, 1.0.1.post2, 1.1.0, 1.2.0, 1.3.0, 1.3.1, 1.4.0, 1.5.0, 1.5.1, 1.6.0, 1.7.0, 1.7.1, 1.8.0, 1.8.1, 1.9.0, 1.9.1, 1.10.0, 1.10.1, 1.10.2, 1.11.0)
    ERROR: No matching distribution found for torch==1.11.0+cu113
    

    python version is 3.7.13

    opened by dingusagar 2
  • ERROR: No matching distribution found for onnxruntime==1.11

    ERROR: No matching distribution found for onnxruntime==1.11

    Hi, Thanks for the great work!

    I am having this error when I try to install the package.

    ERROR: No matching distribution found for onnxruntime==1.11

    Maybe we can update the requirements.txt?

    opened by wanliAlex 1
  • Replace the operator of

    Replace the operator of "torch.einsum"

    q, k, v = (torch.einsum("tbh, oh -> tbo", x, self.attn.in_proj_weight) + self.attn.in_proj_bias).contiguous().chunk( 3, dim=-1)

    @Lednik7 Thanks for your great work on Clip-ONNX. for the pytorch operator of "torch.einsum" , if we don't want to use this operator , do you have other codes to replace this operator? this operator is not friendly to some Inference engine, like NV TensorRT, so if you have other codes to replace einsum, that will be better

    opened by zhangnju 2
Owner
Gerasimov Maxim
16 y.o. Data Scientist. Graduated by Yandex Lyceum and Tinkoff Education
Gerasimov Maxim
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Semi-supervised Domain Adaptation via Minimax Entropy

Semi-supervised Domain Adaptation via Minimax Entropy (ICCV 2019) Install pip install -r requirements.txt The code is written for Pytorch 0.4.0, but s

Vision and Learning Group 243 Jan 09, 2023
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
Official implementation of Deep Burst Super-Resolution

Deep-Burst-SR Official implementation of Deep Burst Super-Resolution Publication: Deep Burst Super-Resolution. Goutam Bhat, Martin Danelljan, Luc Van

Goutam Bhat 113 Dec 19, 2022