Style transfer, deep learning, feature transform

Overview

License CC BY-NC-SA 4.0 Python 2.7 Python 3.5

FastPhotoStyle

License

Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

What's new

Date News
2018-07-25 Migrate to pytorch 0.4.0. For pytorch 0.3.0 user, check out FastPhotoStyle for pytorch 0.3.0.
Add a tutorial showing 3 ways of using the FastPhotoStyle algorithm.
2018-07-10 Our paper is accepted by the ECCV 2018 conference!!!

About

Given a content photo and a style photo, the code can transfer the style of the style photo to the content photo. The details of the algorithm behind the code is documented in our arxiv paper. Please cite the paper if this code repository is used in your publications.

A Closed-form Solution to Photorealistic Image Stylization
Yijun Li (UC Merced), Ming-Yu Liu (NVIDIA), Xueting Li (UC Merced), Ming-Hsuan Yang (NVIDIA, UC Merced), Jan Kautz (NVIDIA)
European Conference on Computer Vision (ECCV), 2018

Tutorial

Please check out the tutorial.

Comments
  • RuntimeError

    RuntimeError

    I am receiving this error: RuntimeError: the number of sizes provided must be greater or equal to the number of dimensions in the tensor at /opt/conda/conda-bld/pytorch_1501972792122/work/pytorch-0.1.12/torch/lib/THC/generic/THCTensor.c:299

    opened by matthewarthur 16
  • Running FastPhotoStyle on MacOS

    Running FastPhotoStyle on MacOS

    Hi I'm a bit new to Python and have trouble understanding the messages I get when running "converter.py" in Terminal:

    usage: cp [-R [-H | -L | -P]] [-fi | -n] [-apvXc] source_file target_file cp [-R [-H | -L | -P]] [-fi | -n] [-apvXc] source_file ... target_directory

    What am I supposed to do next? These don't seem to be standard Python asks and I couldn't find a user guide on how to use this script. Forgive me if I'm missing something obvious

    opened by fabulousrice 10
  • Failed with UMFPACK_ERROR_out_of_memory

    Failed with UMFPACK_ERROR_out_of_memory

    Thanks for the great code. When I run the algorithm with my own high-resolution images (655 * 1280), I find that when using scipy.sparse.linalg.spsolve with scikit-umfpack as solver, it requires too much memory (larger than 128GB). After some investigations, I found the problem might be OS dependent. However, I actually followed the instructions: my OS is Ubuntu 16.04, also the same CUDA and python version.

    I wonder if anyone struggles at the same issue with me, and if there is any other solver. Thanks.

    opened by ycjing 8
  • ValueError: total size of new array must be unchanged

    ValueError: total size of new array must be unchanged

    What am I doing wrong? The simple demo with global style works, but trying with label maps I get an error.

    Picture of the images and the visualized label maps: fps

    I run this command:

    python demo.py \
    --content_image_path images/custom2/content1.png \
    --content_seg_path images/custom2/content1.label/label.png \
    --style_image_path images/custom2/style1.png \
    --style_seg_path images/custom2/style1.label/label.png \
    --output_image_path results/example2.png
    

    Output and error:

    Elapsed time in stylization: 0.417996
    Traceback (most recent call last):
      File "demo.py", line 43, in <module>
        cuda=args.cuda,
      File "/home/ubuntu/.fast-photo-style/process_stylization.py", line 62, in stylization
        stylized_img = p_wct.transform(cont_img, styl_img, cont_seg, styl_seg)
      File "/home/ubuntu/.fast-photo-style/photo_wct.py", line 35, in transform
        csF4 = self.__feature_wct(cF4, sF4, cont_seg, styl_seg)
      File "/home/ubuntu/.fast-photo-style/photo_wct.py", line 88, in __feature_wct
        cont_mask = np.where(t_cont_seg.reshape(t_cont_seg.shape[0] * t_cont_seg.shape[1]) == l)
    ValueError: total size of new array must be unchanged
    
    opened by Instagit 8
  • RuntimeError: cuda runtime error (2) : out of memory

    RuntimeError: cuda runtime error (2) : out of memory

    THCudaCheck FAIL file=/opt/conda/conda-bld/pytorch_1501969512886/work/pytorch-0.1.12/torch/lib/THC/generic/THCStorage.cu line=66 error=2 : out of memory Traceback (most recent call last): File "demo.py", line 68, in stylized_img = p_wct.transform(cont_img, styl_img, cont_seg, styl_seg) File "/home/boss/FastPhotoStyle-master/photo_wct.py", line 36, in transform sF4,sF3,sF2,sF1 = self.e4.forward_multiple(styl_img) File "/home/boss/FastPhotoStyle-master/models.py", line 393, in forward_multiple out1 = self.conv3(out1) File "/home/boss/anaconda2/envs/NVIDIA/lib/python3.5/site-packages/torch/nn/modules/module.py", line 206, in call result = self.forward(*input, **kwargs) File "/home/boss/anaconda2/envs/NVIDIA/lib/python3.5/site-packages/torch/nn/modules/conv.py", line 237, in forward self.padding, self.dilation, self.groups) File "/home/boss/anaconda2/envs/NVIDIA/lib/python3.5/site-packages/torch/nn/functional.py", line 40, in conv2d return f(input, weight, bias) RuntimeError: cuda runtime error (2) : out of memory at /opt/conda/conda-bld/pytorch_1501969512886/work/pytorch-0.1.12/torch/lib/THC/generic/THCStorage.cu:66

    opened by z1412247644 8
  • Much Slower Than the Reported Time

    Much Slower Than the Reported Time

    Hi, I tested your code by running demo.sh with a K40m GPU, but my CUDA version is 8.0 (not 9.1). The total time is about 145s, more than 10 times slower than the reported time in the paper (11.39s for 1K image size). Besides a better GPU (Titan XP), I wonder whether the new CUDA is the key for the high performance. Thanks.

    opened by onlywuyiwuyi 5
  • OSError: [WinError 126] The specified module could not be found

    OSError: [WinError 126] The specified module could not be found

    Hi, I am running FastPhotoStyle code on Windows 10 and using Python 3.7, CUDA 10.0 and cuda 9.1. Although I made the change that was suggested to upgrade the version of Python from string to Byte, I am still getting the same error. Can you please suggest a fix for this issue.

    Resize image: (803,538)->(803,538) Resize image: (960,540)->(960,540) Elapsed time in stylization: 2.325060 Elapsed time in propagation: 83.987388 Elapsed time in post processing: 0.015629 Traceback (most recent call last): File "demo.py", line 47, in no_post=args.no_post File "D:\TrainImages\FastPhotoStyle-master\process_stylization.py", line 135, in stylization out_img = smooth_filter(out_img, cont_pilimg, f_radius=15, f_edge=1e-1) File "D:\TrainImages\FastPhotoStyle-master\smooth_filter.py", line 402, in smooth_filter best_ = smooth_local_affine(output_, input_, 1e-7, 3, H, W, f_radius, f_edge) File "D:\TrainImages\FastPhotoStyle-master\smooth_filter.py", line 333, in smooth_local_affine program = Program(src.encode('utf-8'), 'best_local_affine_kernel.cu'.encode('utf-8')) File "C:\Users\SD\Anaconda3\lib\site-packages\pynvrtc\compiler.py", line 49, in init self._interface = NVRTCInterface(lib_name) File "C:\Users\SD\Anaconda3\lib\site-packages\pynvrtc\interface.py", line 87, in init self._load_nvrtc_lib(lib_path) File "C:\Users\SD\Anaconda3\lib\site-packages\pynvrtc\interface.py", line 109, in _load_nvrtc_lib self.lib = cdll.LoadLibrary(name) File "C:\Users\SD\Anaconda3\lib\ctypes_init.py", line 434, in LoadLibrary return self.dlltype(name) File "C:\Users\SD\Anaconda3\lib\ctypes_init.py", line 356, in init self._handle = _dlopen(self._name, mode) OSError: [WinError 126] The specified module could not be found

    opened by Sunsmiles2 4
  • change image load from 3ch to 1ch

    change image load from 3ch to 1ch

    This addresses issue #55. One expects a 1 channel mask (resize based only on height and width) but you force this to become a 3 channel mask upon loading (mode="RGB"). Now we correctly get a 1 channel 8 bit mask.

    opened by dhpollack 4
  • Can't install cupy

    Can't install cupy

    Command:

    pip install cupy
    

    Result:

    ERROR: Complete output from command python setup.py egg_info:
        ERROR: Options: {'package_name': 'cupy', 'long_description': None, 'wheel_libs': [], 'wheel_includes': [], 'no_rpath': False, 'profile': False, 'linetrace': False, 'annotate': False, 'no_cuda': False}
        
        -------- Configuring Module: cuda --------
        Microsoft Visual C++ 14.0 is required. Get it with "Microsoft Visual C++ Build Tools": https://visualstudio.microsoft.com/downloads/
        
        ************************************************************
        * CuPy Configuration Summary                               *
        ************************************************************
        
        Build Environment:
          Include directories: ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\include', 'C:\\Program Files\\NVIDIA Corporation\\NvToolsExt\\include']
          Library directories: ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\bin', 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\lib\\x64', 'C:\\Program Files\\NVIDIA Corporation\\NvToolsExt\\lib\\x64']
          nvcc command       : ['C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.0\\bin/nvcc.exe']
        
        Environment Variables:
          CFLAGS          : (none)
          LDFLAGS         : (none)
          LIBRARY_PATH    : (none)
          CUDA_PATH       : C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0
          NVTOOLSEXT_PATH : C:\Program Files\NVIDIA Corporation\NvToolsExt\
          NVCC            : (none)
        
        Modules:
          cuda      : No
            -> Include files not found: ['cublas_v2.h', 'cuda.h', 'cuda_profiler_api.h', 'cuda_runtime.h', 'cufft.h', 'curand.h', 'cusparse.h', 'nvrtc.h']
            -> Check your CFLAGS environment variable.
        
        ERROR: CUDA could not be found on your system.
        Please refer to the Installation Guide for details:
        https://docs-cupy.chainer.org/en/stable/install.html
        
        ************************************************************
        
        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\setup.py", line 120, in <module>
            ext_modules = cupy_setup_build.get_ext_modules()
          File "C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\cupy_setup_build.py", line 632, in get_ext_modules
            extensions = make_extensions(arg_options, compiler, use_cython)
          File "C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\cupy_setup_build.py", line 387, in make_extensions
            raise Exception('Your CUDA environment is invalid. '
        Exception: Your CUDA environment is invalid. Please check above error log.
        ----------------------------------------
    ERROR: Command "python setup.py egg_info" failed with error code 1 in C:\Users\FLAMES~1\AppData\Local\Temp\pip-install-ghow8_pv\cupy\
    
    opened by f1am3d 3
  • Smoothing twice

    Smoothing twice

    Within the paper, I can only see smoothing mentioned once. However in the implementation smoothing is performed twice in photo_smooth.py and smooth_filter.py.

    Am I misunderstanding the paper/implementation regarding the second smoothing technique, or is this an addition made? If so, can you explain why this was added?

    opened by wesleyw72 3
  • Torch models to pytorch models, bug fix, CPU support, etc

    Torch models to pytorch models, bug fix, CPU support, etc

    This PR:

    • Convert torch models to pytorch models (listed in TODOs in the origin code) and converter.py shows how it was done. The pytorch model leaves in the submodule PhotoWCTModels which makes it easier to download from a server as https://github.com/NVIDIA/FastPhotoStyle/issues/15 suggested.

    • The models are refactored into less and clear classes. The layers are named according to the origin paper.

    • Fix a bug in Propagator. It fails to process images with alpha channels because it does not open them with RGB mode.

    • CPU support for PhotoWCT. PhotoWCT can work in CPU mode without using .cuda(). This could make it ~10x slower (not too slow yet) but more friendly for those without GPUs or GPUs with less memory as https://github.com/NVIDIA/FastPhotoStyle/issues/17

    I'm sorry that some codes in photo_wct.py are changed by the (PEP8) code formatter, so not too much of them are actually modified.

    Current code are tested. They can work well as before.

    opened by suquark 3
  • no module named segmentation.dataset

    no module named segmentation.dataset

    Hello, thanks for your great work I face not found the dataset when run with demo_example3.sh. Could you guide me where to found this seg.dataset folder. https://github.com/CSAILVision/semantic-segmentation-pytorch looks dont have this folder .

    Thanks!

    image

    opened by juneleung 0
  • Removed a literal comparison pitfall from the code

    Removed a literal comparison pitfall from the code

    The problem The code was comparing booleans using the operator '==', where in Python the indicated is to use the operator 'is', otherwise we would fall into a literal comparison pitfall. This pitfall was detected using Pylint and generated the following message error code and message: Pylint code: C0121

    Comparison 'styl_seg.size == False' should be 'styl_seg.size is False' if checking for the singleton value False, or 'not styl_seg.size' if testing for falsiness

    Solution Removed the '==' operator and changed it to 'is'

    opened by NaelsonDouglas 0
  • Docker build fails

    Docker build fails

    Hi! The docker image fails to build. We get this issue during step 12:

    Step 12/16 : RUN conda install -y -c anaconda pip ---> Running in 15c22eca2c92 Collecting package metadata (repodata.json): ...working... done Solving environment: ...working... The environment is inconsistent, please check the package plan carefully The following packages are causing the inconsistency:

    • https://repo.continuum.io/pkgs/main/linux-64/conda-verify-2.0.0-py36h98955d8_0.tar.bz2/linux-64::conda-verify==2.0.0=py36h98955d8_0
    • https://repo.continuum.io/pkgs/main/linux-64/dask-core-0.15.3-py36h10e6167_0.tar.bz2/linux-64::dask-core==0.15.3=py36h10e6167_0
    • https://repo.continuum.io/pkgs/main/linux-64/cython-0.26.1-py36h21c49d0_0.tar.bz2/linux-64::cython==0.26.1=py36h21c49d0_0
    • https://repo.continuum.io/pkgs/main/linux-64/dask-0.15.3-py36hdc2c8aa_0.tar.bz2/linux-64::dask==0.15.3=py36hdc2c8aa_0
    • https://repo.continuum.io/pkgs/main/linux-64/snowballstemmer-1.2.1-py36h6febd40_0.tar.bz2/linux-64::snowballstemmer==1.2.1=py36h6febd40_0
    • https://repo.continuum.io/pkgs/main/linux-64/greenlet-0.4.12-py36h2d503a6_0.tar.bz2/linux-64::greenlet==0.4.12=py36h2d503a6_0
    • https://repo.continuum.io/pkgs/main/linux-64/ipython_genutils-0.2.0-py36hb52b0d5_0.tar.bz2/linux-64::ipython_genutils==0.2.0=py36hb52b0d5_0
    • https://repo.continuum.io/pkgs/main/linux-64/cryptography-2.0.3-py36ha225213_1.tar.bz2/linux-64::cryptography==2.0.3=py36ha225213_1
    • https://repo.continuum.io/pkgs/main/linux-64/xlrd-1.1.0-py36h1db9f0c_1.tar.bz2/linux-64::xlrd==1.1.0=py36h1db9f0c_1
    • https://repo.continuum.io/pkgs/main/linux-64/pep8-1.7.0-py36h26ade29_0.tar.bz2/linux-64::pep8==1.7.0=py36h26ade29_0
    • https://repo.continuum.io/pkgs/main/linux-64/astroid-1.5.3-py36hbdb9df2_0.tar.bz2/linux-64::astroid==1.5.3=py36hbdb9df2_0
    • https://repo.continuum.io/pkgs/main/linux-64/contextlib2-0.5.5-py36h6c84a62_0.tar.bz2/linux-64::contextlib2==0.5.5=py36h6c84a62_0
    • https://repo.continuum.io/pkgs/main/linux-64/patsy-0.4.1-py36ha3be15e_0.tar.bz2/linux-64::patsy==0.4.1=py36ha3be15e_0
    • https://repo.continuum.io/pkgs/main/linux-64/h5py-2.7.0-py36he81ebca_1.tar.bz2/linux-64::h5py==2.7.0=py36he81ebca_1
    • https://repo.continuum.io/pkgs/main/linux-64/html5lib-0.999999999-py36h2cfc398_0.tar.bz2/linux-64::html5lib==0.999999999=py36h2cfc398_0
    • https://repo.continuum.io/pkgs/main/linux-64/astropy-2.0.2-py36ha51211e_4.tar.bz2/linux-64::astropy==2.0.2=py36ha51211e_4
    • https://repo.continuum.io/pkgs/main/linux-64/lazy-object-proxy-1.3.1-py36h10fcdad_0.tar.bz2/linux-64::lazy-object-proxy==1.3.1=py36h10fcdad_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter_client-5.1.0-py36h614e9ea_0.tar.bz2/linux-64::jupyter_client==5.1.0=py36h614e9ea_0
    • https://repo.continuum.io/pkgs/main/linux-64/filelock-2.0.12-py36hacfa1f5_0.tar.bz2/linux-64::filelock==2.0.12=py36hacfa1f5_0
    • https://repo.continuum.io/pkgs/main/linux-64/qtawesome-0.4.4-py36h609ed8c_0.tar.bz2/linux-64::qtawesome==0.4.4=py36h609ed8c_0
    • https://repo.continuum.io/pkgs/main/linux-64/mpmath-0.19-py36h8cc018b_2.tar.bz2/linux-64::mpmath==0.19=py36h8cc018b_2
    • https://repo.continuum.io/pkgs/main/linux-64/bkcharts-0.2-py36h735825a_0.tar.bz2/linux-64::bkcharts==0.2=py36h735825a_0
    • https://repo.continuum.io/pkgs/main/linux-64/certifi-2017.7.27.1-py36h8b7b77e_0.tar.bz2/linux-64::certifi==2017.7.27.1=py36h8b7b77e_0
    • https://repo.continuum.io/pkgs/main/linux-64/ipywidgets-7.0.0-py36h7b55c3a_0.tar.bz2/linux-64::ipywidgets==7.0.0=py36h7b55c3a_0
    • https://repo.continuum.io/pkgs/main/linux-64/click-6.7-py36h5253387_0.tar.bz2/linux-64::click==6.7=py36h5253387_0
    • https://repo.continuum.io/pkgs/main/linux-64/docutils-0.14-py36hb0f60f5_0.tar.bz2/linux-64::docutils==0.14=py36hb0f60f5_0
    • https://repo.continuum.io/pkgs/main/linux-64/tblib-1.3.2-py36h34cf8b6_0.tar.bz2/linux-64::tblib==1.3.2=py36h34cf8b6_0
    • https://repo.continuum.io/pkgs/main/linux-64/singledispatch-3.4.0.3-py36h7a266c3_0.tar.bz2/linux-64::singledispatch==3.4.0.3=py36h7a266c3_0
    • https://repo.continuum.io/pkgs/main/linux-64/asn1crypto-0.22.0-py36h265ca7c_1.tar.bz2/linux-64::asn1crypto==0.22.0=py36h265ca7c_1
    • https://repo.continuum.io/pkgs/main/linux-64/jedi-0.10.2-py36h552def0_0.tar.bz2/linux-64::jedi==0.10.2=py36h552def0_0
    • https://repo.continuum.io/pkgs/main/linux-64/distributed-1.19.1-py36h25f3894_0.tar.bz2/linux-64::distributed==1.19.1=py36h25f3894_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycparser-2.18-py36hf9f622e_1.tar.bz2/linux-64::pycparser==2.18=py36hf9f622e_1
    • https://repo.continuum.io/pkgs/main/linux-64/pyodbc-4.0.17-py36h999153c_0.tar.bz2/linux-64::pyodbc==4.0.17=py36h999153c_0
    • https://repo.continuum.io/pkgs/main/linux-64/qt-5.6.2-h974d657_12.tar.bz2/linux-64::qt==5.6.2=h974d657_12
    • https://repo.continuum.io/pkgs/main/linux-64/openssl-1.0.2l-h077ae2c_5.tar.bz2/linux-64::openssl==1.0.2l=h077ae2c_5
    • https://repo.continuum.io/pkgs/main/linux-64/beautifulsoup4-4.6.0-py36h49b8c8c_1.tar.bz2/linux-64::beautifulsoup4==4.6.0=py36h49b8c8c_1
    • https://repo.continuum.io/pkgs/main/linux-64/llvmlite-0.20.0-py36_0.tar.bz2/linux-64::llvmlite==0.20.0=py36_0
    • https://repo.continuum.io/pkgs/main/linux-64/scikit-image-0.13.0-py36had3c07a_1.tar.bz2/linux-64::scikit-image==0.13.0=py36had3c07a_1
    • https://repo.continuum.io/pkgs/main/linux-64/ipykernel-4.6.1-py36hbf841aa_0.tar.bz2/linux-64::ipykernel==4.6.1=py36hbf841aa_0
    • https://repo.continuum.io/pkgs/main/linux-64/nltk-3.2.4-py36h1a0979f_0.tar.bz2/linux-64::nltk==3.2.4=py36h1a0979f_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyterlab_launcher-0.4.0-py36h4d8058d_0.tar.bz2/linux-64::jupyterlab_launcher==0.4.0=py36h4d8058d_0
    • https://repo.continuum.io/pkgs/main/linux-64/mistune-0.7.4-py36hbab8784_0.tar.bz2/linux-64::mistune==0.7.4=py36hbab8784_0
    • https://repo.continuum.io/pkgs/main/linux-64/_ipyw_jlab_nb_ext_conf-0.1.0-py36he11e457_0.tar.bz2/linux-64::_ipyw_jlab_nb_ext_conf==0.1.0=py36he11e457_0
    • https://repo.continuum.io/pkgs/main/linux-64/wheel-0.29.0-py36he7f4e38_1.tar.bz2/linux-64::wheel==0.29.0=py36he7f4e38_1
    • https://repo.continuum.io/pkgs/main/linux-64/bitarray-0.8.1-py36h5834eb8_0.tar.bz2/linux-64::bitarray==0.8.1=py36h5834eb8_0
    • https://repo.continuum.io/pkgs/main/linux-64/ipython-6.1.0-py36hc72a948_1.tar.bz2/linux-64::ipython==6.1.0=py36hc72a948_1
    • https://repo.continuum.io/pkgs/main/linux-64/pywavelets-0.5.2-py36he602eb0_0.tar.bz2/linux-64::pywavelets==0.5.2=py36he602eb0_0
    • https://repo.continuum.io/pkgs/main/linux-64/six-1.11.0-py36h372c433_1.tar.bz2/linux-64::six==1.11.0=py36h372c433_1
    • https://repo.continuum.io/pkgs/main/linux-64/bottleneck-1.2.1-py36haac1ea0_0.tar.bz2/linux-64::bottleneck==1.2.1=py36haac1ea0_0
    • https://repo.continuum.io/pkgs/main/linux-64/isort-4.2.15-py36had401c0_0.tar.bz2/linux-64::isort==4.2.15=py36had401c0_0
    • https://repo.continuum.io/pkgs/main/linux-64/gmpy2-2.0.8-py36h55090d7_1.tar.bz2/linux-64::gmpy2==2.0.8=py36h55090d7_1
    • https://repo.continuum.io/pkgs/main/linux-64/markupsafe-1.0-py36hd9260cd_1.tar.bz2/linux-64::markupsafe==1.0=py36hd9260cd_1
    • https://repo.continuum.io/pkgs/main/linux-64/get_terminal_size-1.0.0-haa9412d_0.tar.bz2/linux-64::get_terminal_size==1.0.0=haa9412d_0
    • https://repo.continuum.io/pkgs/main/linux-64/sympy-1.1.1-py36hc6d1c1c_0.tar.bz2/linux-64::sympy==1.1.1=py36hc6d1c1c_0
    • https://repo.continuum.io/pkgs/main/linux-64/odo-0.5.1-py36h90ed295_0.tar.bz2/linux-64::odo==0.5.1=py36h90ed295_0
    • https://repo.continuum.io/pkgs/main/linux-64/msgpack-python-0.4.8-py36hec4c5d1_0.tar.bz2/linux-64::msgpack-python==0.4.8=py36hec4c5d1_0
    • https://repo.continuum.io/pkgs/main/linux-64/olefile-0.44-py36h79f9f78_0.tar.bz2/linux-64::olefile==0.44=py36h79f9f78_0
    • https://repo.continuum.io/pkgs/main/linux-64/tornado-4.5.2-py36h1283b2a_0.tar.bz2/linux-64::tornado==4.5.2=py36h1283b2a_0
    • https://repo.continuum.io/pkgs/main/linux-64/sortedcollections-0.5.3-py36h3c761f9_0.tar.bz2/linux-64::sortedcollections==0.5.3=py36h3c761f9_0
    • https://repo.continuum.io/pkgs/main/linux-64/flask-cors-3.0.3-py36h2d857d3_0.tar.bz2/linux-64::flask-cors==3.0.3=py36h2d857d3_0
    • https://repo.continuum.io/pkgs/main/linux-64/pysocks-1.6.7-py36hd97a5b1_1.tar.bz2/linux-64::pysocks==1.6.7=py36hd97a5b1_1
    • https://repo.continuum.io/pkgs/main/linux-64/sphinxcontrib-1.0-py36h6d0f590_1.tar.bz2/linux-64::sphinxcontrib==1.0=py36h6d0f590_1
    • https://repo.continuum.io/pkgs/main/linux-64/pkginfo-1.4.1-py36h215d178_1.tar.bz2/linux-64::pkginfo==1.4.1=py36h215d178_1
    • https://repo.continuum.io/pkgs/main/linux-64/sphinx-1.6.3-py36he5f0bdb_0.tar.bz2/linux-64::sphinx==1.6.3=py36he5f0bdb_0
    • https://repo.continuum.io/pkgs/main/linux-64/mccabe-0.6.1-py36h5ad9710_1.tar.bz2/linux-64::mccabe==0.6.1=py36h5ad9710_1
    • https://repo.continuum.io/pkgs/main/linux-64/simplegeneric-0.8.1-py36h2cb9092_0.tar.bz2/linux-64::simplegeneric==0.8.1=py36h2cb9092_0
    • https://repo.continuum.io/pkgs/main/linux-64/itsdangerous-0.24-py36h93cc618_1.tar.bz2/linux-64::itsdangerous==0.24=py36h93cc618_1
    • https://repo.continuum.io/pkgs/main/linux-64/xlsxwriter-1.0.2-py36h3de1aca_0.tar.bz2/linux-64::xlsxwriter==1.0.2=py36h3de1aca_0
    • https://repo.continuum.io/pkgs/main/linux-64/pandas-0.20.3-py36h842e28d_2.tar.bz2/linux-64::pandas==0.20.3=py36h842e28d_2
    • https://repo.continuum.io/pkgs/main/linux-64/requests-2.18.4-py36he2e5f8d_1.tar.bz2/linux-64::requests==2.18.4=py36he2e5f8d_1
    • https://repo.continuum.io/pkgs/main/linux-64/pytest-3.2.1-py36h11ad3bb_1.tar.bz2/linux-64::pytest==3.2.1=py36h11ad3bb_1
    • https://repo.continuum.io/pkgs/main/linux-64/werkzeug-0.12.2-py36hc703753_0.tar.bz2/linux-64::werkzeug==0.12.2=py36hc703753_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter_core-4.3.0-py36h357a921_0.tar.bz2/linux-64::jupyter_core==4.3.0=py36h357a921_0
    • https://repo.continuum.io/pkgs/main/linux-64/pixman-0.34.0-h83dc358_2.tar.bz2/linux-64::pixman==0.34.0=h83dc358_2
    • https://repo.continuum.io/pkgs/main/linux-64/qtconsole-4.3.1-py36h8f73b5b_0.tar.bz2/linux-64::qtconsole==4.3.1=py36h8f73b5b_0
    • https://repo.continuum.io/pkgs/main/linux-64/datashape-0.5.4-py36h3ad6b5c_0.tar.bz2/linux-64::datashape==0.5.4=py36h3ad6b5c_0
    • https://repo.continuum.io/pkgs/main/linux-64/nbconvert-5.3.1-py36hb41ffb7_0.tar.bz2/linux-64::nbconvert==5.3.1=py36hb41ffb7_0
    • https://repo.continuum.io/pkgs/main/linux-64/sqlalchemy-1.1.13-py36hfb5efd7_0.tar.bz2/linux-64::sqlalchemy==1.1.13=py36hfb5efd7_0
    • https://repo.continuum.io/pkgs/main/linux-64/pylint-1.7.4-py36hb9d4533_0.tar.bz2/linux-64::pylint==1.7.4=py36hb9d4533_0
    • https://repo.continuum.io/pkgs/main/linux-64/bokeh-0.12.10-py36hbb0e44a_0.tar.bz2/linux-64::bokeh==0.12.10=py36hbb0e44a_0
    • https://repo.continuum.io/pkgs/main/linux-64/imageio-2.2.0-py36he555465_0.tar.bz2/linux-64::imageio==2.2.0=py36he555465_0
    • https://repo.continuum.io/pkgs/main/linux-64/chardet-3.0.4-py36h0f667ec_1.tar.bz2/linux-64::chardet==3.0.4=py36h0f667ec_1
    • https://repo.continuum.io/pkgs/main/linux-64/spyder-3.2.4-py36hbe6152b_0.tar.bz2/linux-64::spyder==3.2.4=py36hbe6152b_0
    • https://repo.continuum.io/pkgs/main/linux-64/testpath-0.3.1-py36h8cadb63_0.tar.bz2/linux-64::testpath==0.3.1=py36h8cadb63_0
    • https://repo.continuum.io/pkgs/main/linux-64/flask-0.12.2-py36hb24657c_0.tar.bz2/linux-64::flask==0.12.2=py36hb24657c_0
    • https://repo.continuum.io/pkgs/main/linux-64/jdcal-1.3-py36h4c697fb_0.tar.bz2/linux-64::jdcal==1.3=py36h4c697fb_0
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-client-1.6.5-py36h19c0dcd_0.tar.bz2/linux-64::anaconda-client==1.6.5=py36h19c0dcd_0
    • https://repo.continuum.io/pkgs/main/linux-64/pandocfilters-1.4.2-py36ha6701b7_1.tar.bz2/linux-64::pandocfilters==1.4.2=py36ha6701b7_1
    • https://repo.continuum.io/pkgs/main/linux-64/pygments-2.2.0-py36h0d3125c_0.tar.bz2/linux-64::pygments==2.2.0=py36h0d3125c_0
    • https://repo.continuum.io/pkgs/main/linux-64/webencodings-0.5.1-py36h800622e_1.tar.bz2/linux-64::webencodings==0.5.1=py36h800622e_1
    • https://repo.continuum.io/pkgs/main/linux-64/qtpy-1.3.1-py36h3691cc8_0.tar.bz2/linux-64::qtpy==1.3.1=py36h3691cc8_0
    • https://repo.continuum.io/pkgs/main/linux-64/pexpect-4.2.1-py36h3b9d41b_0.tar.bz2/linux-64::pexpect==4.2.1=py36h3b9d41b_0
    • https://repo.continuum.io/pkgs/main/linux-64/pyyaml-3.12-py36hafb9ca4_1.tar.bz2/linux-64::pyyaml==3.12=py36hafb9ca4_1
    • https://repo.continuum.io/pkgs/main/linux-64/python-3.6.3-hc9025b9_1.tar.bz2/linux-64::python==3.6.3=hc9025b9_1
    • https://repo.continuum.io/pkgs/main/linux-64/terminado-0.6-py36ha25a19f_0.tar.bz2/linux-64::terminado==0.6=py36ha25a19f_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter-1.0.0-py36h9896ce5_0.tar.bz2/linux-64::jupyter==1.0.0=py36h9896ce5_0
    • https://repo.continuum.io/pkgs/main/linux-64/et_xmlfile-1.0.1-py36hd6bccc3_0.tar.bz2/linux-64::et_xmlfile==1.0.1=py36hd6bccc3_0
    • https://repo.continuum.io/pkgs/main/linux-64/notebook-5.0.0-py36h0b20546_2.tar.bz2/linux-64::notebook==5.0.0=py36h0b20546_2
    • https://repo.continuum.io/pkgs/main/linux-64/ptyprocess-0.5.2-py36h69acd42_0.tar.bz2/linux-64::ptyprocess==0.5.2=py36h69acd42_0
    • https://repo.continuum.io/pkgs/main/linux-64/pytz-2017.2-py36hc2ccc2a_1.tar.bz2/linux-64::pytz==2017.2=py36hc2ccc2a_1
    • https://repo.continuum.io/pkgs/main/linux-64/cycler-0.10.0-py36h93f1223_0.tar.bz2/linux-64::cycler==0.10.0=py36h93f1223_0
    • https://repo.continuum.io/pkgs/main/linux-64/sphinxcontrib-websupport-1.0.1-py36hb5cb234_1.tar.bz2/linux-64::sphinxcontrib-websupport==1.0.1=py36hb5cb234_1
    • https://repo.continuum.io/pkgs/main/linux-64/pyqt-5.6.0-py36h0386399_5.tar.bz2/linux-64::pyqt==5.6.0=py36h0386399_5
    • https://repo.continuum.io/pkgs/main/linux-64/cloudpickle-0.4.0-py36h30f8c20_0.tar.bz2/linux-64::cloudpickle==0.4.0=py36h30f8c20_0
    • https://repo.continuum.io/pkgs/main/linux-64/pyflakes-1.6.0-py36h7bd6a15_0.tar.bz2/linux-64::pyflakes==1.6.0=py36h7bd6a15_0
    • https://repo.continuum.io/pkgs/main/linux-64/numpydoc-0.7.0-py36h18f165f_0.tar.bz2/linux-64::numpydoc==0.7.0=py36h18f165f_0
    • https://repo.continuum.io/pkgs/main/linux-64/pickleshare-0.7.4-py36h63277f8_0.tar.bz2/linux-64::pickleshare==0.7.4=py36h63277f8_0
    • https://repo.continuum.io/pkgs/main/linux-64/wcwidth-0.1.7-py36hdf4376a_0.tar.bz2/linux-64::wcwidth==0.1.7=py36hdf4376a_0
    • https://repo.continuum.io/pkgs/main/linux-64/sip-4.18.1-py36h51ed4ed_2.tar.bz2/linux-64::sip==4.18.1=py36h51ed4ed_2
    • https://repo.continuum.io/pkgs/main/linux-64/navigator-updater-0.1.0-py36h14770f7_0.tar.bz2/linux-64::navigator-updater==0.1.0=py36h14770f7_0
    • https://repo.continuum.io/pkgs/main/linux-64/babel-2.5.0-py36h7d14adf_0.tar.bz2/linux-64::babel==2.5.0=py36h7d14adf_0
    • https://repo.continuum.io/pkgs/main/linux-64/nbformat-4.4.0-py36h31c9010_0.tar.bz2/linux-64::nbformat==4.4.0=py36h31c9010_0
    • https://repo.continuum.io/pkgs/main/linux-64/zict-0.1.3-py36h3a3bf81_0.tar.bz2/linux-64::zict==0.1.3=py36h3a3bf81_0
    • https://repo.continuum.io/pkgs/main/linux-64/statsmodels-0.8.0-py36h8533d0b_0.tar.bz2/linux-64::statsmodels==0.8.0=py36h8533d0b_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycurl-7.43.0-py36h5e72054_3.tar.bz2/linux-64::pycurl==7.43.0=py36h5e72054_3
    • https://repo.continuum.io/pkgs/main/linux-64/seaborn-0.8.0-py36h197244f_0.tar.bz2/linux-64::seaborn==0.8.0=py36h197244f_0
    • https://repo.continuum.io/pkgs/main/linux-64/pillow-4.2.1-py36h9119f52_0.tar.bz2/linux-64::pillow==4.2.1=py36h9119f52_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycrypto-2.6.1-py36h6998063_1.tar.bz2/linux-64::pycrypto==2.6.1=py36h6998063_1
    • https://repo.continuum.io/pkgs/main/linux-64/mkl-service-1.1.2-py36h17a0993_4.tar.bz2/linux-64::mkl-service==1.1.2=py36h17a0993_4
    • https://repo.continuum.io/pkgs/main/linux-64/jupyterlab-0.27.0-py36h86377d0_2.tar.bz2/linux-64::jupyterlab==0.27.0=py36h86377d0_2
    • https://repo.continuum.io/pkgs/main/linux-64/conda-build-3.0.27-py36h940a66d_0.tar.bz2/linux-64::conda-build==3.0.27=py36h940a66d_0
    • https://repo.continuum.io/pkgs/main/linux-64/jupyter_console-5.2.0-py36he59e554_1.tar.bz2/linux-64::jupyter_console==5.2.0=py36he59e554_1
    • https://repo.continuum.io/pkgs/main/linux-64/numexpr-2.6.2-py36hdd3393f_1.tar.bz2/linux-64::numexpr==2.6.2=py36hdd3393f_1
    • https://repo.continuum.io/pkgs/main/linux-64/nose-1.3.7-py36hcdf7029_2.tar.bz2/linux-64::nose==1.3.7=py36hcdf7029_2
    • https://repo.continuum.io/pkgs/main/linux-64/wrapt-1.10.11-py36h28b7045_0.tar.bz2/linux-64::wrapt==1.10.11=py36h28b7045_0
    • https://repo.continuum.io/pkgs/main/linux-64/xlwt-1.3.0-py36h7b00a1f_0.tar.bz2/linux-64::xlwt==1.3.0=py36h7b00a1f_0
    • https://repo.continuum.io/pkgs/main/linux-64/jinja2-2.9.6-py36h489bce4_1.tar.bz2/linux-64::jinja2==2.9.6=py36h489bce4_1
    • https://repo.continuum.io/pkgs/main/linux-64/decorator-4.1.2-py36hd076ac8_0.tar.bz2/linux-64::decorator==4.1.2=py36hd076ac8_0
    • https://repo.continuum.io/pkgs/main/linux-64/packaging-16.8-py36ha668100_1.tar.bz2/linux-64::packaging==16.8=py36ha668100_1
    • https://repo.continuum.io/pkgs/main/linux-64/harfbuzz-1.5.0-h2545bd6_0.tar.bz2/linux-64::harfbuzz==1.5.0=h2545bd6_0
    • https://repo.continuum.io/pkgs/main/linux-64/scipy-0.19.1-py36h9976243_3.tar.bz2/linux-64::scipy==0.19.1=py36h9976243_3
    • https://repo.continuum.io/pkgs/main/linux-64/numpy-1.13.3-py36ha12f23b_0.tar.bz2/linux-64::numpy==1.13.3=py36ha12f23b_0
    • https://repo.continuum.io/pkgs/main/linux-64/typing-3.6.2-py36h7da032a_0.tar.bz2/linux-64::typing==3.6.2=py36h7da032a_0
    • https://repo.continuum.io/pkgs/main/linux-64/pango-1.40.11-h8191d47_0.tar.bz2/linux-64::pango==1.40.11=h8191d47_0
    • https://repo.continuum.io/pkgs/main/linux-64/entrypoints-0.2.3-py36h1aec115_2.tar.bz2/linux-64::entrypoints==0.2.3=py36h1aec115_2
    • https://repo.continuum.io/pkgs/main/linux-64/ruamel_yaml-0.11.14-py36ha2fb22d_2.tar.bz2/linux-64::ruamel_yaml==0.11.14=py36ha2fb22d_2
    • https://repo.continuum.io/pkgs/main/linux-64/pytables-3.4.2-py36h3b5282a_2.tar.bz2/linux-64::pytables==3.4.2=py36h3b5282a_2
    • https://repo.continuum.io/pkgs/main/linux-64/pyzmq-16.0.2-py36h3b0cf96_2.tar.bz2/linux-64::pyzmq==16.0.2=py36h3b0cf96_2
    • https://repo.continuum.io/pkgs/main/linux-64/locket-0.2.0-py36h787c0ad_1.tar.bz2/linux-64::locket==0.2.0=py36h787c0ad_1
    • https://repo.continuum.io/pkgs/main/linux-64/toolz-0.8.2-py36h81f2dff_0.tar.bz2/linux-64::toolz==0.8.2=py36h81f2dff_0
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-navigator-1.6.9-py36h11ddaaa_0.tar.bz2/linux-64::anaconda-navigator==1.6.9=py36h11ddaaa_0
    • https://repo.continuum.io/pkgs/main/linux-64/heapdict-1.0.0-py36h79797d7_0.tar.bz2/linux-64::heapdict==1.0.0=py36h79797d7_0
    • https://repo.continuum.io/pkgs/main/linux-64/setuptools-36.5.0-py36he42e2e1_0.tar.bz2/linux-64::setuptools==36.5.0=py36he42e2e1_0
    • https://repo.continuum.io/pkgs/main/linux-64/scikit-learn-0.19.1-py36h7aa7ec6_0.tar.bz2/linux-64::scikit-learn==0.19.1=py36h7aa7ec6_0
    • https://repo.continuum.io/pkgs/main/linux-64/curl-7.55.1-hcb0b314_2.tar.bz2/linux-64::curl==7.55.1=hcb0b314_2
    • https://repo.continuum.io/pkgs/main/linux-64/multipledispatch-0.4.9-py36h41da3fb_0.tar.bz2/linux-64::multipledispatch==0.4.9=py36h41da3fb_0
    • https://repo.continuum.io/pkgs/main/linux-64/lxml-4.1.0-py36h5b66e50_0.tar.bz2/linux-64::lxml==4.1.0=py36h5b66e50_0
    • https://repo.continuum.io/pkgs/main/linux-64/bleach-2.0.0-py36h688b259_0.tar.bz2/linux-64::bleach==2.0.0=py36h688b259_0
    • https://repo.continuum.io/pkgs/main/linux-64/clyent-1.2.2-py36h7e57e65_1.tar.bz2/linux-64::clyent==1.2.2=py36h7e57e65_1
    • https://repo.continuum.io/pkgs/main/linux-64/glob2-0.5-py36h2c1b292_1.tar.bz2/linux-64::glob2==0.5=py36h2c1b292_1
    • https://repo.continuum.io/pkgs/main/linux-64/boto-2.48.0-py36h6e4cd66_1.tar.bz2/linux-64::boto==2.48.0=py36h6e4cd66_1
    • https://repo.continuum.io/pkgs/main/linux-64/cairo-1.14.10-haa5651f_5.tar.bz2/linux-64::cairo==1.14.10=haa5651f_5
    • https://repo.continuum.io/pkgs/main/linux-64/py-1.4.34-py36h0712aa3_1.tar.bz2/linux-64::py==1.4.34=py36h0712aa3_1
    • https://repo.continuum.io/pkgs/main/linux-64/pip-9.0.1-py36h8ec8b28_3.tar.bz2/linux-64::pip==9.0.1=py36h8ec8b28_3
    • https://repo.continuum.io/pkgs/main/linux-64/fastcache-1.0.2-py36h5b0c431_0.tar.bz2/linux-64::fastcache==1.0.2=py36h5b0c431_0
    • https://repo.continuum.io/pkgs/main/linux-64/gevent-1.2.2-py36h2fe25dc_0.tar.bz2/linux-64::gevent==1.2.2=py36h2fe25dc_0
    • https://repo.continuum.io/pkgs/main/linux-64/imagesize-0.7.1-py36h52d8127_0.tar.bz2/linux-64::imagesize==0.7.1=py36h52d8127_0
    • https://repo.continuum.io/pkgs/main/linux-64/openpyxl-2.4.8-py36h41dd2a8_1.tar.bz2/linux-64::openpyxl==2.4.8=py36h41dd2a8_1
    • https://repo.continuum.io/pkgs/main/linux-64/networkx-2.0-py36h7e96fb8_0.tar.bz2/linux-64::networkx==2.0=py36h7e96fb8_0
    • https://repo.continuum.io/pkgs/main/linux-64/pathlib2-2.3.0-py36h49efa8e_0.tar.bz2/linux-64::pathlib2==2.3.0=py36h49efa8e_0
    • https://repo.continuum.io/pkgs/main/linux-64/blaze-0.11.3-py36h4e06776_0.tar.bz2/linux-64::blaze==0.11.3=py36h4e06776_0
    • https://repo.continuum.io/pkgs/main/linux-64/libxcb-1.12-h84ff03f_3.tar.bz2/linux-64::libxcb==1.12=h84ff03f_3
    • https://repo.continuum.io/pkgs/main/linux-64/alabaster-0.7.10-py36h306e16b_0.tar.bz2/linux-64::alabaster==0.7.10=py36h306e16b_0
    • https://repo.continuum.io/pkgs/main/linux-64/matplotlib-2.1.0-py36hba5de38_0.tar.bz2/linux-64::matplotlib==2.1.0=py36hba5de38_0
    • https://repo.continuum.io/pkgs/main/linux-64/pycodestyle-2.3.1-py36hf609f19_0.tar.bz2/linux-64::pycodestyle==2.3.1=py36hf609f19_0
    • https://repo.continuum.io/pkgs/main/linux-64/prompt_toolkit-1.0.15-py36h17d85b1_0.tar.bz2/linux-64::prompt_toolkit==1.0.15=py36h17d85b1_0
    • https://repo.continuum.io/pkgs/main/linux-64/numba-0.35.0-np113py36_10.tar.bz2/linux-64::numba==0.35.0=np113py36_10
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-5.0.1-py36hd30a520_1.tar.bz2/linux-64::anaconda==5.0.1=py36hd30a520_1
    • https://repo.continuum.io/pkgs/main/linux-64/widgetsnbextension-3.0.2-py36hd01bb71_1.tar.bz2/linux-64::widgetsnbextension==3.0.2=py36hd01bb71_1
    • https://repo.continuum.io/pkgs/main/linux-64/unicodecsv-0.14.1-py36ha668878_0.tar.bz2/linux-64::unicodecsv==0.14.1=py36ha668878_0
    • https://repo.continuum.io/pkgs/main/linux-64/pyparsing-2.2.0-py36hee85983_1.tar.bz2/linux-64::pyparsing==2.2.0=py36hee85983_1
    • https://repo.continuum.io/pkgs/main/linux-64/cffi-1.10.0-py36had8d393_1.tar.bz2/linux-64::cffi==1.10.0=py36had8d393_1
    • https://repo.continuum.io/pkgs/main/linux-64/pyopenssl-17.2.0-py36h5cc804b_0.tar.bz2/linux-64::pyopenssl==17.2.0=py36h5cc804b_0
    • https://repo.continuum.io/pkgs/main/linux-64/rope-0.10.5-py36h1f8c17e_0.tar.bz2/linux-64::rope==0.10.5=py36h1f8c17e_0
    • https://repo.continuum.io/pkgs/main/linux-64/cytoolz-0.8.2-py36h708bfd4_0.tar.bz2/linux-64::cytoolz==0.8.2=py36h708bfd4_0
    • https://repo.continuum.io/pkgs/main/linux-64/backports-1.0-py36hfa02d7e_1.tar.bz2/linux-64::backports==1.0=py36hfa02d7e_1
    • https://repo.continuum.io/pkgs/main/linux-64/urllib3-1.22-py36hbe7ace6_0.tar.bz2/linux-64::urllib3==1.22=py36hbe7ace6_0
    • https://repo.continuum.io/pkgs/main/linux-64/python-dateutil-2.6.1-py36h88d3b88_1.tar.bz2/linux-64::python-dateutil==2.6.1=py36h88d3b88_1
    • https://repo.continuum.io/pkgs/main/linux-64/sortedcontainers-1.5.7-py36hdf89491_0.tar.bz2/linux-64::sortedcontainers==1.5.7=py36hdf89491_0
    • https://repo.continuum.io/pkgs/main/linux-64/ply-3.10-py36hed35086_0.tar.bz2/linux-64::ply==3.10=py36hed35086_0
    • https://repo.continuum.io/pkgs/main/linux-64/psutil-5.4.0-py36h84c53db_0.tar.bz2/linux-64::psutil==5.4.0=py36h84c53db_0
    • https://repo.continuum.io/pkgs/main/linux-64/jsonschema-2.6.0-py36h006f8b5_0.tar.bz2/linux-64::jsonschema==2.6.0=py36h006f8b5_0
    • https://repo.continuum.io/pkgs/main/linux-64/path.py-10.3.1-py36he0c6f6d_0.tar.bz2/linux-64::path.py==10.3.1=py36he0c6f6d_0
    • https://repo.continuum.io/pkgs/main/linux-64/traitlets-4.3.2-py36h674d592_0.tar.bz2/linux-64::traitlets==4.3.2=py36h674d592_0
    • https://repo.continuum.io/pkgs/main/linux-64/anaconda-project-0.8.0-py36h29abdf5_0.tar.bz2/linux-64::anaconda-project==0.8.0=py36h29abdf5_0
    • https://repo.continuum.io/pkgs/main/linux-64/partd-0.3.8-py36h36fd896_0.tar.bz2/linux-64::partd==0.3.8=py36h36fd896_0
    • https://repo.continuum.io/pkgs/main/linux-64/backports.shutil_get_terminal_size-1.0.0-py36hfea85ff_2.tar.bz2/linux-64::backports.shutil_get_terminal_size==1.0.0=py36hfea85ff_2
    • https://repo.continuum.io/pkgs/main/linux-64/idna-2.6-py36h82fb2a8_1.tar.bz2/linux-64::idna==2.6=py36h82fb2a8_1
    • https://repo.continuum.io/pkgs/main/linux-64/colorama-0.3.9-py36h489cec4_0.tar.bz2/linux-64::colorama==0.3.9=py36h489cec4_0
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::ninja==1.8.2=py36h6bb024c_1
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::pycosat==0.6.3=py36h27cfd23_0
    • pytorch/noarch::torchvision==0.2.1=py_2
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::conda-package-handling==1.7.2=py36h03888b9_0
    • https://repo.continuum.io/pkgs/main/linux-64/linux-64::conda==4.9.2=py36h06a4308_0
    • pytorch/linux-64::pytorch==0.4.1=py36_py35_py27__9.0.176_7.1.2_2
    • https://repo.continuum.io/pkgs/main/noarch/noarch::tqdm==4.59.0=pyhd3eb1b0_1
    opened by Mazuzel 1
  • SVD fails in __wct_core when cont_feat or styl_feat are [x,1] dimensional matrix

    SVD fails in __wct_core when cont_feat or styl_feat are [x,1] dimensional matrix

    Unless I'm doing something wrong, there is a corner case inside def __wct_core, when one of the matrices is basically a vector. When calculating: contentConv = torch.mm(cont_feat, cont_feat.t()).div(cFSize[1] - 1) + iden

    cFSize[1] is 1 so there is a division by 0=> and we get a matrix full of NAN which is causing the SVD to fail.

    For now, as a w/a inside def __feature_wct I've changed the condtion if cont_mask[0].size <= 0 or styl_mask[0].size <= 0: continue

    to

    if cont_mask[0].size <= 1 or styl_mask[0].size <= 1: continue

    to ignore labels that causing this issue.

    Any idea why it happens and what is the best approach to fix it?

    opened by dkreinov 1
  • Update to the latest torch

    Update to the latest torch

    Note that demo_example3.sh depends on CSAIL Semantic Segmentation repo, which itself depends on later pytorch version. This example might break -- I added a warning in there.

    opened by z-a-f 2
Releases(f33e07f)
Owner
NVIDIA Corporation
NVIDIA Corporation
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19)

Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset (CVPR'19) Tianyu Wang*, Xin Yang*, Ke Xu, Shaozhe Chen, Qiang Zhang, Ry

Steve Wong 177 Dec 01, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023