Pure python implementation reverse-mode automatic differentiation

Related tags

Deep Learningminigrad
Overview

MiniGrad

A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python.

Inspired by Andrej Karpathy's micrograd, but with more comments and less cleverness. Thanks for the wonderful reference implementation and tests!

Overview

Create a Scalar.

a = Scalar(1.5)

Do some calculations.

b = Scalar(-4.0)
c = a**3 / 5
d = c + (b**2).relu()

Compute the gradients.

d.backward()

Plot the computational graph.

draw_graph(d)

Repo Structure

  1. demo.ipynb: Demo notebook of MiniGrad's functionality.
  2. tests.ipynb: Test notebook to verify gradients against PyTorch and JAX. Install both to run tests.
  3. minigrad/minigrad.py: The entire autograd logic in one (~100 loc) numeric class. See section below for details.
  4. minigrad/visualize.py: This just draws nice-looking computational graphs. Install Graphviz to run it.
  5. requirements.txt: MiniGrad requires no external modules to run. This file just sets up my dev environment.

Implementation

MiniGrad is implemented in one small (~100 loc) Python class, using no external modules.

The entirety of the auto-differentiation logic lives in the Scalar class in minigrad.py.

A Scalar wraps a float/int and overrides its arithmetic magic methods in order to:

  1. Stitch together a define-by-run computational graph when doing arithmetic operations on a Scalar
  2. Hard code the derivative functions of arithmetic operations
  3. Keep track of ∂self/∂parent between adjacent nodes
  4. Compute ∂output/∂self with the chain rule on demand (when .backward() is called)

This is called reverse-mode automatic differentiation. It's great when you have few outputs and many inputs, since it computes all derivatives of one output in one pass. This is also how TensorFlow and PyTorch normally compute gradients.

(Forward-mode automatic differentiation also exists, and has the opposite advantage.)

Not in Scope

This project is just for fun, so the following are not planned:

  • Vectorization
  • Higher order derivatives (i.e. Scalar.grad is a Scalar itself)
  • Forward-mode automatic differentiation
  • Neural network library on top of MiniGrad
Owner
Kenny Song
Research at UTokyo. Ex-Product @google.
Kenny Song
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches

CRISCE: Automatically Generating Critical Driving Scenarios From Car Accident Sketches This document describes how to install and use CRISCE (CRItical

Chair of Software Engineering II, Uni Passau 2 Feb 09, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
A motion detection system with RaspberryPi, OpenCV, Python

Human Detection System using Raspberry Pi Functionality Activates a relay on detecting motion. You may need following components to get the expected R

Omal Perera 55 Dec 04, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022