DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Related tags

Deep LearningDrWhy
Overview

Responsible Machine Learning

With Great Power Comes Great Responsibility. Voltaire (well, maybe)

How to develop machine learning models in a responsible manner? There are several topics worth considering:

  • Effective. Is the model good enough? Models with low performance should not be used because they can do more harm than good. Communicate the performance of the model in a language that the user understands. Remember that the models will work on a different dataset than the training one. Make sure to assess the performance on the target dataset.

  • Transparent. Does the user know what influences model predictions? Interpretability and explainability is important. If the model decisions affect us directly or indirectly, we should know where these decisions come from and how they can be changed.

  • Fair. Does the model discriminate on the basis of gender, age, race or other sensitive attribute? Direct or indirect? It should not! Discrimination can come in many faces. The model may give lower scores, may have lower performance, or may be based on different variables for the protected population.

  • Secure. Do not let your model be hacked. Every complex system has its vulnerabilities. Seek them out and fix them. Some users may use various tricks to pull model predictions onto their site.

  • Confidential. Models are often built on sensitive data. Make sure that the data does not leak, so that sensitive attributes are not shared with unauthorized persons. Also beware of model leaks.

  • Reproducible. Usually the model development process consists of many steps. Make sure that they are completely reproducible and thus can be verified one by one.

Collection of tools for Visual Exploration, Explanation and Debugging of Predictive Models

It takes a village to raise a child model.

The way how we do predictive modeling is very ineffective. We spend way too much time on manual time-consuming and easy to automate activities like data cleaning and exploration, crisp modeling, model validation. We should be focusing more on model understanding, productisation and communication.

Here are gathered tools that can be used to make out work more efficient through the whole model lifecycle. The unified grammar beyond DrWhy.AI universe is described in the Explanatory Model Analysis: Explore, Explain and Examine Predictive Models book.

Lifecycle for Predictive Models

The DrWhy is based on an unified Model Development Process inspired by RUP. Find an overview in the diagram below.

images/DALEXverse.png

The DrWhy.AI family

Packages in the DrWhy.AI family of models may be divided into four classes.

  • Model adapters. Predictive models created with different tools have different structures, and different interfaces. Model adapters create uniform wrappers. This way other packages may operate on models in an unified way. DALEX is a lightweight package with generic interface. DALEXtra is a package with extensions for heavyweight interfaces like scikitlearn, h2o, mlr.

  • Model agnostic explainers. These packages implement specific methods for model exploration. They can be applied to a single model or they can compare different models. ingredients implements variable specific techniques like Ceteris Paribus, Partial Dependency, Permutation based Feature Importance. iBreakDown implements techniques for variable attribution, like Break Down or SHAPley values. auditor implements techniques for model validation, residual diagnostic and performance diagnostic.

  • Model specific explainers. These packages implement model specific techniques. randomForestExplainer implements techniques for exploration of randomForest models. EIX implements techniques for exploration of gbm and xgboost models. cr19 implements techniques for exploration of survival models.

  • Automated exploration. These packages combine series of model exploration techniques and produce an automated report of website for model exploration. modelStudio implements a dashboard generator for local and global interactive model exploration. modelDown implements a HTML website generator for global model cross comparison.

images/grammar_of_explanations.png

Here is a more detailed overview.


DALEX

CRAN_Status_Badge Build Status Coverage StatusDrWhy-eXtrAI

The DALEX package (Descriptive mAchine Learning EXplanations) helps to understand how complex models are working. The main function explain creates a wrapper around a predictive model. Wrapped models may then be explored and compared with a collection of local and global explainers. Recent developments from the area of Interpretable Machine Learning/eXplainable Artificial Intelligence.

DALEX wraps methods from other packages, i.e. 'pdp' (Greenwell 2017) doi:10.32614/RJ-2017-016, 'ALEPlot' (Apley 2018) arXiv:1612.08468, 'factorMerger' (Sitko and Biecek 2017) arXiv:1709.04412, 'breakDown' package (Staniak and Biecek 2018) doi:10.32614/RJ-2018-072, (Fisher at al. 2018) arXiv:1801.01489.

Vignettes:


DALEXtra

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The DALEXtra package is an extension pack for DALEX package. This package provides easy to use connectors for models created with scikitlearn, keras, H2O, mljar and mlr.

Vignettes:


ingredients

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The ingredients package is a collection of tools for assessment of feature importance and feature effects.

Key functions: feature_importance() for assessment of global level feature importance, ceteris_paribus() for calculation of the Ceteris Paribus / What-If Profiles, partial_dependency() for Partial Dependency Plots, conditional_dependency() for Conditional Dependency Plots also called M Plots, accumulated_dependency() for Accumulated Local Effects Plots, cluster_profiles() for aggregation of Ceteris Paribus Profiles, generic print() and plot() for better usability of selected explainers, generic plotD3() for interactive D3 based explanations, and generic describe() for explanations in natural language.

Vignettes:


iBreakDown

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The iBreakDown package is a model agnostic tool for explanation of predictions from black boxes ML models. Break Down Table shows contributions of every variable to a final prediction. Break Down Plot presents variable contributions in a concise graphical way. SHAP (Shapley Additive Attributions) values are calculated as average from random Break Down profiles. This package works for binary classifiers as well as regression models.

iBreakDown is a successor of the breakDown package. It is faster (complexity O(p) instead of O(p^2)). It supports interactions and interactive explainers with D3.js plots.

Vignettes:


auditor

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The auditor package is a tool for model-agnostic validation. Implemented techniques facilitate assessing and comparing the goodness of fit and performance of models. In addition, they may be used for the analysis of the similarity of residuals and for the identification of outliers and influential observations. The examination is carried out by diagnostic scores and visual verification. Due to the flexible and consistent grammar, it is simple to validate models of any classes.

Learn more:


fairmodels

CRAN_Status_Badge R build status Codecov test coverage DrWhy-eXtrAI

Flexible tool for bias detection, visualization, and mitigation. Use models explained with DALEX and calculate fairness classification metrics based on confusion matrices using fairness_check() or try newly developed module for regression models using fairness_check_regression(). R package fairmodels allows to compare and gain information about various machine learning models. Mitigate bias with various pre-processing and post-processing techniques. Make sure your models are classifying protected groups similarly.

Learn more:


vivo

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The vivo package helps to calculate instance level variable importance (measure of local sensitivity). The importance measure is based on Ceteris Paribus profiles and can be calculated in eight variants. Select the variant that suits your needs by setting parameters: absolute_deviation, point and density.

Learn more:


randomForestExplainer

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The randomForestExplainer package helps to understand what is happening inside a Random Forest model. This package helps to explore main effects and pairwise interactions, depth distribution, conditional responses and feature importance.

Learn more:


xspliner

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The xspliner package is a collection of tools for training interpretable surrogate ML models. The package helps to build simple, interpretable models that inherits informations provided by more complicated ones - resulting model may be treated as explanation of provided black box, that was supplied prior to the algorithm. Provided functionality offers graphical and statistical evaluation both for overall model and its components.


shapper

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The shapper is an R wrapper of SHAP python library. It accesses python implementation through reticulate connector.


drifter

CRAN_Status_Badge Build Status Coverage StatusDrWhy-eXtrAI

The drifter is an R package that identifies concept drift in model structure or in data structure.

Machine learning models are often fitted and validated on historical data under an assumption that data are stationary. The most popular techniques for validation (k-fold cross-validation, repeated cross-validation, and so on) test models on data with the same distribution as training data.

Yet, in many practical applications, deployed models are working in a changing environment. After some time, due to changes in the environment, model performance may degenerate, as model may be less reliable.

Concept drift refers to the change in the data distribution or in the relationships between variables over time. Think about model for energy consumption for a school, over time the school may be equipped with larger number of devices of with more power-efficient devices that may affect the model performance.


EIX

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The EIX package implements set of techniques to explore and explain XGBoost and LightGBM models. Main functions of this package cover various variable importance measures and well as functions for identification of interactions between variables.

Learn more:


modelStudio

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The modelStudio package automates the explanatory analysis of machine learning predictive models. It generates advanced interactive model explanations in the form of a serverless HTML site with only one line of code. This tool is model-agnostic, therefore compatible with most of the black-box predictive models and frameworks (e.g. mlr/mlr3, xgboost, caret, h2o, parsnip, tidymodels, scikit-learn, lightgbm, keras/tensorflow).

The main modelStudio() function computes various (instance and model-level) explanations and produces a customisable dashboard, which consists of multiple panels for plots with their short descriptions. Easily save  the dashboard and share it with others. Tools for Explanatory Model Analysis unite with tools for Exploratory Data Analysis to give a broad overview of the model behavior.

Learn more:


arenar

CRAN_Status_Badge R build status Codecov test coverage DrWhy-eXtrAI

Arena is an interactive tool that allows you to explore and compare any model regardless of its internal structure.

The arenar package can be run in two modes - live (R runs in the background and calculates all necessary explanations) and serverless (all necessary explanations are calculated earlier).

Using the Arena is trivially simple. Examples with different levels of advancement are available:


modelDown

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

ThemodelDown package generates a website with HTML summaries for predictive models. Is uses DALEX explainers to compute and plot summaries of how given models behave. We can see how well models behave (Model Performance, Auditor), how much each variable contributes to predictions (Variable Response) and which variables are the most important for a given model (Variable Importance). We can also compare Concept Drift for pairs of models (Drifter). Additionally, data available on the website can be easily recreated in current R session (using archivist package).

Learn more:


rSAFE

CRAN_Status_Badge Build Status Coverage StatusDrWhy-eXtrAI

The rSAFE package is a model agnostic tool for making an interpretable white-box model more accurate using alternative black-box model called surrogate model. Based on the complicated model, such as neural network or random forest, new features are being extracted and then used in the process of fitting a simpler interpretable model, improving its overall performance.

Learn more:


EloML

CRAN_Status_Badge Build Status Coverage Status DrWhy-AutoMat

The EloML package provides Elo rating system for machine learning models. Elo Predictive Power (EPP) score helps to assess model performance based Elo ranking system.

Learn more:


archivist

CRAN_Status_Badge Build Status Coverage Status DrWhy-eXtrAI

The archivist package automate serialization and deserialization of R objects. Objects are stored with additional metadata to facilitate reproducibility and governance of data science projects.

Everything that exists in R is an object. archivist is an R package that stores copies of all objects along with their metadata. It helps to manage and recreate objects with final or partial results from data analysis. Use archivist to record every result, to share these results with future you or with others, to search through repository of objects created in the past but needed now.

Learn more:


Tools that are useful during the model lifetime. MI2 stands for our internal tools.

1. Data preparation

  • dataMaid; A Suite of Checks for Identification of Potential Errors in a Data Frame as Part of the Data Screening Process
  • inspectdf; A collection of utilities for columnwise summary, comparison and visualisation of data frames.
  • validate; Professional data validation for the R environment
  • errorlocate; Find and replace erroneous fields in data using validation rules
  • ggplot2; System for declaratively creating graphics, based on The Grammar of Graphics.

2. Data understanding

  • Model Agnostic Variable Importance Scores. Surrogate learning = Train an elastic model and measure feature importance in such model. See DALEX, Model Class Reliance MCR
  • vip Variable importance plots
  • SAFE MI2 Surrogate learning = Train an elastic model and extract feature transformations.
  • xspliner MI2 Using surrogate black-boxes to train interpretable spline based additive models
  • factorMerger MI2 Set of tools for factors merging paper
  • ingredients MI2 Set of tools for model level feature effects and feature importance.

4. Model assembly

5. Model audit

  • auditor MI2 model verification, validation, and error analysis vigniette
  • DALEX MI2 Descriptive mAchine Learning EXplanations
  • iml; interpretable machine learning R package
  • randomForestExplainer MI2 A set of tools to understand what is happening inside a Random Forest
  • survxai MI2 Explanations for survival models paper

6. Model delivery

  • iBreakDown, pyBreakDown MI2 Model Agnostic Explainers for Individual Predictions (with interactions)
  • ceterisParibus, pyCeterisParibus, ceterisParibusD3 and ingredients MI2 Ceteris Paribus Plots (What-If plots) for explanations of a single observation
  • localModel and live MI2 LIME-like explanations with interpretable features based on Ceteris Paribus curves.
  • lime; Local Interpretable Model-Agnostic Explanations (R port of original Python package)
  • shapper MI2 An R wrapper of SHAP python library
  • modelDown MI2 modelDown generates a website with HTML summaries for predictive models
  • modelStudio MI2 modelStudio generates an interactive dashboard with D3 based summaries for predictive models
  • drifter MI2 Concept Drift and Concept Shift Detection for Predictive Models
  • archivist MI2 A set of tools for datasets and plots archiving paper

Family of Model Explainers

images/DrWhyAI.png

Architecture of DrWhy

DrWhy works on fully trained predictive models. Models can be created with any tool.

DrWhy uses DALEX package to wrap model with additional metadata required for explanations, like validation data, predict function etc.

Explainers for predictive models can be created with model agnostic or model specific functions implemented in various packages.

Hype_Cycle

Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022