Hierarchical Attentive Recurrent Tracking

Overview

Hierarchical Attentive Recurrent Tracking

This is an official Tensorflow implementation of single object tracking in videos by using hierarchical attentive recurrent neural networks, as presented in the following paper:

A. R. Kosiorek, A. Bewley, I. Posner, "Hierarchical Attentive Recurrent Tracking", NIPS 2017.

Installation

Install Tensorflow v1.1 and the following dependencies (using pip install -r requirements.txt (preferred) or pip install [package]):

  • matplotlib==1.5.3
  • numpy==1.12.1
  • pandas==0.18.1
  • scipy==0.18.1

Demo

The notebook scripts/demo.ipynb contains a demo, which shows how to evaluate tracker on an arbitrary image sequence. By default, it runs on images located in imgs folder and uses a pretrained model. Before running the demo please download AlexNet weights first (described in the Training section).

Data

  1. Download KITTI dataset from here. We need left color images and tracking labels.
  2. Unpack data into a data folder; images should be in an image folder and labels should be in a label folder.
  3. Resize all the images to (heigh=187, width=621) e.g. by using the scripts/resize_imgs.sh script.

Training

  1. Download the AlexNet weights:

    • Execute scripts/download_alexnet.sh or
    • Download the weights from here and put the file in the checkpoints folder.
  2. Run

     python scripts/train_hart_kitti.py --img_dir=path/to/image/folder --label_dir=/path/to/label/folder
    

The training script will save model checkpoints in the checkpoints folder and report train and test scores every couple of epochs. You can run tensorboard in the checkpoints folder to visualise training progress. Training should converge in about 400k iterations, which should take about 3 days. It might take a couple of hours between logging messages, so don't worry.

Evaluation on KITTI dataset

The scripts/eval_kitti.ipynb notebook contains the code necessary to prepare (IoU, timesteps) curves for train and validation set of KITTI. Before running the evaluation:

  • Download AlexNet weights (described in the Training section).
  • Update image and label folder paths in the notebook.

Citation

If you find this repo useful in your research, please consider citing:

@inproceedings{Kosiorek2017hierarchical,
   title = {Hierarchical Attentive Recurrent Tracking},
   author = {Kosiorek, Adam R and Bewley, Alex and Posner, Ingmar},
   booktitle = {Neural Information Processing Systems},
   url = {http://www.robots.ox.ac.uk/~mobile/Papers/2017NIPS_AdamKosiorek.pdf},
   pdf = {http://www.robots.ox.ac.uk/~mobile/Papers/2017NIPS_AdamKosiorek.pdf},
   year = {2017},
   month = {December}
}

License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Release Notes

Version 1.0

  • Original version from the paper. It contains the KITTI tracking experiment.
Owner
Adam Kosiorek
I'm a PhD student at the Oxford Robotics Institute. I work on Machine Learning for perception - I'm looking into external memory and attention for RNNs.
Adam Kosiorek
Code for "Searching for Efficient Multi-Stage Vision Transformers"

Searching for Efficient Multi-Stage Vision Transformers This repository contains the official Pytorch implementation of "Searching for Efficient Multi

Yi-Lun Liao 62 Oct 25, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Numenta Platform for Intelligent Computing is an implementation of Hierarchical Temporal Memory (HTM), a theory of intelligence based strictly on the neuroscience of the neocortex.

NuPIC Numenta Platform for Intelligent Computing The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implem

Numenta 6.3k Dec 30, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022