Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Related tags

Deep LearningArTIST
Overview

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021)

Pytorch implementation of the ArTIST motion model. In this repo, there are

  • Training script for the Moving Agent network
  • Training script for the ArTIST motion model
  • Demo script for Inferring the likelihood of current observations (detections)
  • Demo script for Inpainting the missing observation/detections

Demo 1: Likelihood estimation of observation

Run:

python3 demo_scoring.py

This will generate the output in the temp/ar/log_p directory, look like this: scoring demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of clusters.

The model then evaluates the log-likelihood (lower the better) of all detections as the continuation of the observed sequence.

Demo 2: Sequence inpainting

Run:

python3 demo_inpainting.py

This will generate the multiple plauusible continuations of an observed motion, stored in the temp/ar/inpainting directory. One example looks like this: inpainting demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of samples we wish to generate.

For each generated future sequence, it computes the IoU between the last generated bounding box and the last groundtruth bounding box, as well as the mean IoU for the entire generated sequence and the groundtruth sequence.

Utilities

In this repo, there are a number of scripts to generate the required data to train/evaluate ArTIST.

  • prepare_data: Given the annotations of a dataset (e.g., MOT17), it extracts the motion sequences as well as the IDs of the social tracklets living the life span of the corresponding sequence, and stores it as a dictionary. If there are multiple tracking datasets that you wish to combine, you can use the merge_datasets() function inside this script.
  • clustering: Given the output dictionary of prepare_data script, this script performs the K-Means clustering and stores the centroids which are then used in the ArTIST model.
  • dataloader_ae and dataloader_ar: Given the post-processes version of the dataset dictionary (which can be done by running the post_process script), these two scripts define the dataloaders for training the MA-Net and ArTIST. Note that the dataloader of ArTIST uses the MA-Net to compute the social information. This can also be done jointly in an end-to-end fashion, which we observed almost no difference.
  • create_demo_test_subset: In order to run the demo scripts, you need to run this script. However, the demo test subset has been produced and stored in data/demo_test_subset.npy.

Data

You can download the required data from the Release and put it in data/ directory.

Citation

If you find this work useful in your own research, please consider citing:

@inproceedings{saleh2021probabilistic,
author={Saleh, Fatemeh and Aliakbarian, Sadegh and Rezatofighi, Hamid and Salzmann, Mathieu and Gould, Stephen},
title = {Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
year = {2021}
}
You might also like...
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

 A New Approach to Overgenerating and Scoring Abstractive Summaries
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

The code for our paper
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
Comments
  • Re-creating paper results

    Re-creating paper results

    Did you use implement the ArTIST paradigm in the SORT algorithm to achieve the results in your paper? If so, do you have an example of integrating the ArTIST motion model with SORT? I am trying to re-create the results of the paper.

    How do I re-create the results you obtained in your paper?

    opened by vineetrshenoy 1
  • dataloader.py: shape mismatch

    dataloader.py: shape mismatch

    when i use dataloader.py to load the data, here comes a error:could not broadcast input array from shape (2) into shape (4) in line 33 of dataloader.py, I wonder how to fix the bug and what is the data format in data/postp_combined_path_mot_train.npy, thanks for your help.

    opened by guileihu 0
Releases(data-release)
Owner
Fatemeh
Fatemeh
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Namish Khanna 40 Oct 11, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022