Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Related tags

Deep LearningArTIST
Overview

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021)

Pytorch implementation of the ArTIST motion model. In this repo, there are

  • Training script for the Moving Agent network
  • Training script for the ArTIST motion model
  • Demo script for Inferring the likelihood of current observations (detections)
  • Demo script for Inpainting the missing observation/detections

Demo 1: Likelihood estimation of observation

Run:

python3 demo_scoring.py

This will generate the output in the temp/ar/log_p directory, look like this: scoring demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of clusters.

The model then evaluates the log-likelihood (lower the better) of all detections as the continuation of the observed sequence.

Demo 2: Sequence inpainting

Run:

python3 demo_inpainting.py

This will generate the multiple plauusible continuations of an observed motion, stored in the temp/ar/inpainting directory. One example looks like this: inpainting demo

This demo gets as input a pretrained model of the Moving Agent Network (MA-Net), a pretrained model of ArTIST, the centroids (obtain centroids via the script in the utils), a demo test sample index and the number of samples we wish to generate.

For each generated future sequence, it computes the IoU between the last generated bounding box and the last groundtruth bounding box, as well as the mean IoU for the entire generated sequence and the groundtruth sequence.

Utilities

In this repo, there are a number of scripts to generate the required data to train/evaluate ArTIST.

  • prepare_data: Given the annotations of a dataset (e.g., MOT17), it extracts the motion sequences as well as the IDs of the social tracklets living the life span of the corresponding sequence, and stores it as a dictionary. If there are multiple tracking datasets that you wish to combine, you can use the merge_datasets() function inside this script.
  • clustering: Given the output dictionary of prepare_data script, this script performs the K-Means clustering and stores the centroids which are then used in the ArTIST model.
  • dataloader_ae and dataloader_ar: Given the post-processes version of the dataset dictionary (which can be done by running the post_process script), these two scripts define the dataloaders for training the MA-Net and ArTIST. Note that the dataloader of ArTIST uses the MA-Net to compute the social information. This can also be done jointly in an end-to-end fashion, which we observed almost no difference.
  • create_demo_test_subset: In order to run the demo scripts, you need to run this script. However, the demo test subset has been produced and stored in data/demo_test_subset.npy.

Data

You can download the required data from the Release and put it in data/ directory.

Citation

If you find this work useful in your own research, please consider citing:

@inproceedings{saleh2021probabilistic,
author={Saleh, Fatemeh and Aliakbarian, Sadegh and Rezatofighi, Hamid and Salzmann, Mathieu and Gould, Stephen},
title = {Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
year = {2021}
}
You might also like...
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

 A New Approach to Overgenerating and Scoring Abstractive Summaries
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

The code for our paper
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Object Detection and Multi-Object Tracking
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.
Comments
  • Re-creating paper results

    Re-creating paper results

    Did you use implement the ArTIST paradigm in the SORT algorithm to achieve the results in your paper? If so, do you have an example of integrating the ArTIST motion model with SORT? I am trying to re-create the results of the paper.

    How do I re-create the results you obtained in your paper?

    opened by vineetrshenoy 1
  • dataloader.py: shape mismatch

    dataloader.py: shape mismatch

    when i use dataloader.py to load the data, here comes a error:could not broadcast input array from shape (2) into shape (4) in line 33 of dataloader.py, I wonder how to fix the bug and what is the data format in data/postp_combined_path_mot_train.npy, thanks for your help.

    opened by guileihu 0
Releases(data-release)
Owner
Fatemeh
Fatemeh
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

SenseNet is a sensorimotor and touch simulator for deep reinforcement learning research

59 Feb 25, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Propose a principled and practically effective framework for unsupervised accuracy estimation and error detection tasks with theoretical analysis and state-of-the-art performance.

Detecting Errors and Estimating Accuracy on Unlabeled Data with Self-training Ensembles This project is for the paper: Detecting Errors and Estimating

Jiefeng Chen 13 Nov 21, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Repository of our paper 'Refer-it-in-RGBD' in CVPR 2021

Refer-it-in-RGBD This is the repository of our paper 'Refer-it-in-RGBD: A Bottom-up Approach for 3D Visual Grounding in RGBD Images' in CVPR 2021 Pape

Haolin Liu 34 Nov 07, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023