Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

Related tags

Deep LearningGSDT
Overview

GSDT

Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here. If you find our work useful, we'd appreciate you citing our paper as follows:

@article{Wang2020_GSDT, 
author = {Wang, Yongxin and Kitani, Kris and Weng, Xinshuo}, 
journal = {arXiv:2006.13164}, 
title = {{Joint Object Detection and Multi-Object Tracking with Graph Neural Networks}}, 
year = {2020} 
}

Introduction

Object detection and data association are critical components in multi-object tracking (MOT) systems. Despite the fact that the two components are dependent on each other, prior work often designs detection and data association modules separately which are trained with different objectives. As a result, we cannot back-propagate the gradients and optimize the entire MOT system, which leads to sub-optimal performance. To address this issue, recent work simultaneously optimizes detection and data association modules under a joint MOT framework, which has shown improved performance in both modules. In this work, we propose a new instance of joint MOT approach based on Graph Neural Networks (GNNs). The key idea is that GNNs can model relations between variable-sized objects in both the spatial and temporal domains, which is essential for learning discriminative features for detection and data association. Through extensive experiments on the MOT15/16/17/20 datasets, we demonstrate the effectiveness of our GNN-based joint MOT approach and show the state-of-the-art performance for both detection and MOT tasks.

Usage

Dependencies

We recommend using anaconda for managing dependency and environments. You may follow the commands below to setup your environment.

conda create -n dev python=3.6
conda activate dev
pip install -r requirements.txt

We use the PyTorch Geometric package for the implementation of our Graph Neural Network based architecture.

bash install_pyg.sh   # we used CUDA_version=cu101 

Build Deformable Convolutional Networks V2 (DCNv2)

cd ./src/lib/models/networks/DCNv2
bash make.sh

To automatically generate output tracking as videos, please install ffmpeg

conda install ffmpeg=4.2.2

Data preperation

We follow the same dataset setup as in JDE. Please refer to their DATA ZOO for data download and preperation.

To prepare 2DMOT15 and MOT20 data, you can directly download from the MOT Challenge website, and format each directory as follows:

MOT15
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)
MOT20
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train(empty)

Then change the seq_root and label_root in src/gen_labels_15.py and src/gen_labels_20.py accordingly, and run:

cd src
python gen_labels_15.py
python gen_labels_20.py

This will generate the desired label format of 2DMOT15 and MOT20. The seqinfo.ini files are required for 2DMOT15 and can be found here [Google], [Baidu],code:8o0w.

Inference

Download and save the pretrained weights for each dataset by following the links below:

Dataset Model
2DMOT15 model_mot15.pth
MOT17 model_mot17.pth
MOT20 model_mot20.pth

Run one of the following command to reproduce our paper's tracking performance on the MOT Challenge.

cd ./experiments
track_gnn_mot_AGNNConv_RoIAlign_mot15.sh 
track_gnn_mot_AGNNConv_RoIAlign_mot17.sh 
track_gnn_mot_AGNNConv_RoIAlign_mot20.sh 

To clarify, currently we directly used the MOT17 results as MOT16 results for submission. That is, our MOT16 and MOT17 results and models are identical.

Training

We are currently in the process of cleaning the training code. We'll release as soon as we can. Stay tuned!

Performance on MOT Challenge

You can refer to MOTChallenge website for performance of our method. For your convenience, we summarize results below:

Dataset MOTA IDF1 MT ML IDS
2DMOT15 60.7 64.6 47.0% 10.5% 477
MOT16 66.7 69.2 38.6% 19.0% 959
MOT17 66.2 68.7 40.8% 18.3% 3318
MOT20 67.1 67.5 53.1% 13.2% 3133

Acknowledgement

A large part of the code is borrowed from FairMOT. We appreciate their great work!

Owner
Richard Wang
Richard Wang
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
This repository contains the source code for the paper First Order Motion Model for Image Animation

!!! Check out our new paper and framework improved for articulated objects First Order Motion Model for Image Animation This repository contains the s

13k Jan 09, 2023
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022