InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Overview

InsightFace: 2D and 3D Face Analysis Project

By Jia Guo and Jiankang Deng

Top News

2021-06-05: We launch a Masked Face Recognition Challenge & Workshop on ICCV 2021.

2021-05-15: We released an efficient high accuracy face detection approach called SCRFD.

2021-04-18: We achieved Rank-4th on NIST-FRVT 1:1, see leaderboard.

2021-03-13: We have released our official ArcFace PyTorch implementation, see here.

License

The code of InsightFace is released under the MIT License. There is no limitation for both academic and commercial usage.

The training data containing the annotation (and the models trained with these data) are available for non-commercial research purposes only.

Introduction

InsightFace is an open source 2D&3D deep face analysis toolbox, mainly based on MXNet and PyTorch.

The master branch works with MXNet 1.2 to 1.6, PyTorch 1.6+, with Python 3.x.

ArcFace Video Demo

ArcFace Demo

Please click the image to watch the Youtube video. For Bilibili users, click here.

Recent Update

2021-06-05: We launch a Masked Face Recognition Challenge & Workshop on ICCV 2021.

2021-05-15: We released an efficient high accuracy face detection approach called SCRFD.

2021-04-18: We achieved Rank-4th on NIST-FRVT 1:1, see leaderboard.

2021-03-13: We have released our official ArcFace PyTorch implementation, see here.

2021-03-09: Tips for training large-scale face recognition model, such as millions of IDs(classes).

2021-02-21: We provide a simple face mask renderer here which can be used as a data augmentation tool while training face recognition models.

2021-01-20: OneFlow based implementation of ArcFace and Partial-FC, here.

2020-10-13: A new training method and one large training set(360K IDs) were released here by DeepGlint.

2020-10-09: We opened a large scale recognition test benchmark IFRT

2020-08-01: We released lightweight facial landmark models with fast coordinate regression(106 points). See detail here.

2020-04-27: InsightFace pretrained models and MS1M-Arcface are now specified as the only external training dataset, for iQIYI iCartoonFace challenge, see detail here.

2020.02.21: Instant discussion group created on QQ with group-id: 711302608. For English developers, see install tutorial here.

2020.02.16: RetinaFace now can detect faces with mask, for anti-CoVID19, see detail here

2019.08.10: We achieved 2nd place at WIDER Face Detection Challenge 2019.

2019.05.30: Presentation at cvmart

2019.04.30: Our Face detector (RetinaFace) obtains state-of-the-art results on the WiderFace dataset.

2019.04.14: We will launch a Light-weight Face Recognition challenge/workshop on ICCV 2019.

2019.04.04: Arcface achieved state-of-the-art performance (7/109) on the NIST Face Recognition Vendor Test (FRVT) (1:1 verification) report (name: Imperial-000 and Imperial-001). Our solution is based on [MS1MV2+DeepGlintAsian, ResNet100, ArcFace loss].

2019.02.08: Please check https://github.com/deepinsight/insightface/tree/master/recognition/ArcFace for our parallel training code which can easily and efficiently support one million identities on a single machine (8* 1080ti).

2018.12.13: Inference acceleration TVM-Benchmark.

2018.10.28: Light-weight attribute model Gender-Age. About 1MB, 10ms on single CPU core. Gender accuracy 96% on validation set and 4.1 age MAE.

2018.10.16: We achieved state-of-the-art performance on Trillionpairs (name: nttstar) and IQIYI_VID (name: WitcheR).

Contents

Deep Face Recognition

Face Detection

Face Alignment

Citation

Contact

Deep Face Recognition

Introduction

In this module, we provide training data, network settings and loss designs for deep face recognition. The training data includes, but not limited to the cleaned MS1M, VGG2 and CASIA-Webface datasets, which were already packed in MXNet binary format. The network backbones include ResNet, MobilefaceNet, MobileNet, InceptionResNet_v2, DenseNet, etc.. The loss functions include Softmax, SphereFace, CosineFace, ArcFace, Sub-Center ArcFace and Triplet (Euclidean/Angular) Loss.

You can check the detail page of our work ArcFace(which accepted in CVPR-2019) and SubCenter-ArcFace(which accepted in ECCV-2020).

margin penalty for target logit

Our method, ArcFace, was initially described in an arXiv technical report. By using this module, you can simply achieve LFW 99.83%+ and Megaface 98%+ by a single model. This module can help researcher/engineer to develop deep face recognition algorithms quickly by only two steps: download the binary dataset and run the training script.

Training Data

All face images are aligned by ficial five landmarks and cropped to 112x112:

Please check Dataset-Zoo for detail information and dataset downloading.

  • Please check recognition/tools/face2rec2.py on how to build a binary face dataset. You can either choose MTCNN or RetinaFace to align the faces.

Train

  1. Install MXNet with GPU support (Python 3.X).
pip install mxnet-cu101 # which should match your installed cuda version
  1. Clone the InsightFace repository. We call the directory insightface as INSIGHTFACE_ROOT.
git clone --recursive https://github.com/deepinsight/insightface.git
  1. Download the training set (MS1M-Arcface) and place it in $INSIGHTFACE_ROOT/recognition/datasets/. Each training dataset includes at least following 6 files:
    faces_emore/
       train.idx
       train.rec
       property
       lfw.bin
       cfp_fp.bin
       agedb_30.bin

The first three files are the training dataset while the last three files are verification sets.

  1. Train deep face recognition models. In this part, we assume you are in the directory $INSIGHTFACE_ROOT/recognition/ArcFace/.

Place and edit config file:

cp sample_config.py config.py
vim config.py # edit dataset path etc..

We give some examples below. Our experiments were conducted on the Tesla P40 GPU.

(1). Train ArcFace with LResNet100E-IR.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r100 --loss arcface --dataset emore

It will output verification results of LFW, CFP-FP and AgeDB-30 every 2000 batches. You can check all options in config.py. This model can achieve LFW 99.83+ and MegaFace 98.3%+.

(2). Train CosineFace with LResNet50E-IR.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r50 --loss cosface --dataset emore

(3). Train Softmax with LMobileNet-GAP.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss softmax --dataset emore

(4). Fine-turn the above Softmax model with Triplet loss.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network m1 --loss triplet --lr 0.005 --pretrained ./models/m1-softmax-emore,1

(5). Training in model parallel acceleration.

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train_parall.py --network r100 --loss arcface --dataset emore
  1. Verification results.

LResNet100E-IR network trained on MS1M-Arcface dataset with ArcFace loss:

Method LFW(%) CFP-FP(%) AgeDB-30(%)
Ours 99.80+ 98.0+ 98.20+

Pretrained Models

You can use $INSIGHTFACE_ROOT/recognition/arcface_torch/eval/verification.py to test all the pre-trained models.

Please check Model-Zoo for more pretrained models.

Verification Results on Combined Margin

A combined margin method was proposed as a function of target logits value and original θ:

COM(θ) = cos(m_1*θ+m_2) - m_3

For training with m1=1.0, m2=0.3, m3=0.2, run following command:

CUDA_VISIBLE_DEVICES='0,1,2,3' python -u train.py --network r100 --loss combined --dataset emore

Results by using MS1M-IBUG(MS1M-V1)

Method m1 m2 m3 LFW CFP-FP AgeDB-30
W&F Norm Softmax 1 0 0 99.28 88.50 95.13
SphereFace 1.5 0 0 99.76 94.17 97.30
CosineFace 1 0 0.35 99.80 94.4 97.91
ArcFace 1 0.5 0 99.83 94.04 98.08
Combined Margin 1.2 0.4 0 99.80 94.08 98.05
Combined Margin 1.1 0 0.35 99.81 94.50 98.08
Combined Margin 1 0.3 0.2 99.83 94.51 98.13
Combined Margin 0.9 0.4 0.15 99.83 94.20 98.16

Test on MegaFace

Please check $INSIGHTFACE_ROOT/evaluation/megaface/ to evaluate the model accuracy on Megaface. All aligned images were already provided.

512-D Feature Embedding

In this part, we assume you are in the directory $INSIGHTFACE_ROOT/deploy/. The input face image should be generally centre cropped. We use RNet+ONet of MTCNN to further align the image before sending it to the feature embedding network.

  1. Prepare a pre-trained model.
  2. Put the model under $INSIGHTFACE_ROOT/models/. For example, $INSIGHTFACE_ROOT/models/model-r100-ii.
  3. Run the test script $INSIGHTFACE_ROOT/deploy/test.py.

For single cropped face image(112x112), total inference time is only 17ms on our testing server(Intel E5-2660 @ 2.00GHz, Tesla M40, LResNet34E-IR).

Third-party Re-implementation

Face Detection

RetinaFace

RetinaFace is a practical single-stage SOTA face detector which is initially introduced in arXiv technical report and then accepted by CVPR 2020. We provide training code, training dataset, pretrained models and evaluation scripts.

demoimg1

Please check RetinaFace for detail.

RetinaFaceAntiCov

RetinaFaceAntiCov is an experimental module to identify face boxes with masks. Please check RetinaFaceAntiCov for detail.

demoimg1

Face Alignment

DenseUNet

Please check the Menpo Benchmark and our Dense U-Net for detail. We also provide other network settings such as classic hourglass. You can find all of training code, training dataset and evaluation scripts there.

CoordinateReg

On the other hand, in contrast to heatmap based approaches, we provide some lightweight facial landmark models with fast coordinate regression. The input of these models is loose cropped face image while the output is the direct landmark coordinates. See detail at alignment-coordinateReg. Now only pretrained models available.

imagevis
videovis

Citation

If you find InsightFace useful in your research, please consider to cite the following related papers:

@inproceedings{deng2019retinaface,
title={RetinaFace: Single-stage Dense Face Localisation in the Wild},
author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos},
booktitle={arxiv},
year={2019}
}

@inproceedings{guo2018stacked,
  title={Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment},
  author={Guo, Jia and Deng, Jiankang and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={BMVC},
  year={2018}
}

@article{deng2018menpo,
  title={The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking},
  author={Deng, Jiankang and Roussos, Anastasios and Chrysos, Grigorios and Ververas, Evangelos and Kotsia, Irene and Shen, Jie and Zafeiriou, Stefanos},
  journal={IJCV},
  year={2018}
}

@inproceedings{deng2018arcface,
title={ArcFace: Additive Angular Margin Loss for Deep Face Recognition},
author={Deng, Jiankang and Guo, Jia and Niannan, Xue and Zafeiriou, Stefanos},
booktitle={CVPR},
year={2019}
}

Contact

[Jia Guo](guojia[at]gmail.com)
[Jiankang Deng](jiankangdeng[at]gmail.com)
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
Autolfads-tf2 - A TensorFlow 2.0 implementation of Latent Factor Analysis via Dynamical Systems (LFADS) and AutoLFADS

autolfads-tf2 A TensorFlow 2.0 implementation of LFADS and AutoLFADS. Installati

Systems Neural Engineering Lab 11 Oct 29, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022