Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Overview

OrthoHash

ArXiv (pdf)

Official pytorch implementation of the paper: "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

NeurIPS 2021

Released on September 29, 2021

Description

This paper proposes a novel deep hashing model with only a single learning objective which is a simplification from most state of the art papers generally use lots of losses and regularizer. Specifically, it maximizes the cosine similarity between the continuous codes and their corresponding binary orthogonal codes to ensure both the discriminative capability of hash codes and the quantization error minimization. Besides, it adopts a Batch Normalization layer to ensure code balance and leverages the Label Smoothing strategy to modify the Cross-Entropy loss to tackle multi-labels classification. Extensive experiments show that the proposed method achieves better performance compared with the state-of-the-art multi-loss hashing methods on several benchmark datasets.

How to run

Training

python main.py --codebook-method B --ds cifar10 --margin 0.3 --seed 59495

Run python main.py --help to check what hyperparameters to run with. All the hyperparameters are the default parameters to get the performance in the paper.

The above command should obtain mAP of 0.824 at best for CIFAR-10.

Testing

python val.py -l /path/to/logdir

Dataset

Category-level Retrieval (ImageNet, NUS-WIDE, MS-COCO)

You may refer to this repo (https://github.com/swuxyj/DeepHash-pytorch) to download the datasets. I was using the same dataset format as HashNet. See utils/datasets.py to understand how to save the data folder.

Dataset sample: https://raw.githubusercontent.com/swuxyj/DeepHash-pytorch/master/data/imagenet/test.txt

For CIFAR-10, the code will auto generate a dataset at the first run. See utils/datasets.py.

Instance-level Retrieval (GLDv2, ROxf, RPar)

This code base is a simplified version and we did not include everything yet. We will release a version that will include the dataset we have generated and also the corresponding evaluation metrics, stay tune.

Performance Tuning (Some Tricks)

I have found some tricks to further improve the mAP score.

Avoid Overfitting

As set by the previous protocols, the dataset is small in size (e.g., 13k training images for ImageNet100) and hence overfitting can easily happen during the training.

An appropriate learning rate for backbone

We set a 10x lower learning rate for the backbone to avoid overfitting.

Cosine Margin

An appropriate higher cosine margin should be able to get higher performance as it slow down the overfitting.

Data Augmentation

We did not tune the data augmentation, but we believe that appropriate data augmentation can obtain a little bit of improvement in mAP.

Database Shuffling

If you shuffle the order of database before calculate_mAP, you might get 1~2% improvement in mAP.

It is because many items with same hamming distance will not be sorted properly, hence it will affect the mAP calculation.

Codebook Method

Run with --codebook-method O might help to improve mAP by 1~2%. The improvement is explained in our paper.

Feedback

Suggestions and opinions on this work (both positive and negative) are greatly welcomed. Please contact the authors by sending an email to jiuntian at gmail.com or kamwoh at gmail.com or cs.chan at um.edu.my.

Related Work

  1. Deep Polarized Network (DPN) - (https://github.com/kamwoh/DPN)

Notes

  1. You may get slightly different performance as compared with the paper, the random seed sometime affect the performance a lot, but should be very close.
  2. I re-run the training (64-bit ImageNet100) with this simplified version can obtain 0.709~0.710 on average (paper: 0.711).

License and Copyright

The project is open source under BSD-3 license (see the LICENSE file).

©2021 Universiti Malaya.

Owner
Ng Kam Woh
- Deep Learning Beginner
Ng Kam Woh
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Generate Cartoon Images using Generative Adversarial Network

AvatarGAN ✨ Generate Cartoon Images using DC-GAN Deep Convolutional GAN is a generative adversarial network architecture. It uses a couple of guidelin

Aakash Jhawar 50 Dec 29, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022