Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

Related tags

Deep LearningJANUS
Overview

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design

This repository contains code for the paper: JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design. By: AkshatKumar Nigam, Robert Pollice, Alán Aspuru-Guzik

Package Requirements:

Using The Code:

The code can be run using:

python ./JANUS.py

Within params_init.py, a user has the option to provide:

  1. A function for calculting property values (see function calc_prop).
  2. Input parameters that are to be used by JANUS (see function generate_params). Initial parameters are provided. These are picked based on prior experience by the authors of the paper.

Output Generation:

All results from running JANUS will be stored here. The following files will be created:

  1. fitness_explore.txt: Fitness values for all molecules from the exploration component of JANUS.
  2. fitness_local_search.txt: Fitness values for all molecules from the exploitation component of JANUS.
  3. generation_all_best.txt: Smiles and fitness value for the best molecule encountered in every generation (iteration).
  4. init_mols.txt: List of molecules used to initialte JANUS.
  5. population_explore.txt: SMILES for all molecules from the exploration component of JANUS.
  6. population_local_search.txt: SMILES for all molecules from the exploitation component of JANUS.

Paper Results/Reproducibility:

Our code and results for each experiment in the paper can be found here:

Questions, problems?

Make a github issue 😄 . Please be as clear and descriptive as possible. Please feel free to reach out in person: (akshat[DOT]nigam[AT]mail[DOT]utoronto[DOT]ca, rob[DOT]pollice[AT]utoronto[DOT]ca)

License

Apache License 2.0

Comments
  • freeze_support runtime error with provided example

    freeze_support runtime error with provided example

    Hello, I'm trying out JANUS and if I just run the example inside the tests as provided I get

      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/multiprocessing/spawn.py", line 134, in _check_not_importing_main
        raise RuntimeError('''
    RuntimeError:
            An attempt has been made to start a new process before the
            current process has finished its bootstrapping phase.
    
            This probably means that you are not using fork to start your
            child processes and you have forgotten to use the proper idiom
            in the main module:
    
                if __name__ == '__main__':
                    freeze_support()
                    ...
    
            The "freeze_support()" line can be omitted if the program
            is not going to be frozen to produce an executable.
    

    This can be fixed by wrapping the creation and running of the JANUS agent and inside

    if __name__ == '__main__':
        torch.multiprocessing.freeze_support()
    

    see for a similar fix https://github.com/pytorch/pytorch/issues/5858#issuecomment-373950687

    I'm happy to submit a PR to fix if you like - it will be very simple

    opened by sofroniewn 4
  • Enquiring on multi-objective fitness function

    Enquiring on multi-objective fitness function

    Hi, I would like to ask if there are multiple objectives which I want the fitness function to fulfil, how would I write out the function because the example on the README.md is only for one objective (logP)?

    Thank you! :D

    opened by yipy0005 3
  • error in numpy/ list multiplication inside mutate_smi_list

    error in numpy/ list multiplication inside mutate_smi_list

    Hello, I am trying to run the provided example, but get the following error

    $ python ./example.py
        Unique and valid fragments generated: 107308
        Unique and valid fragments generated: 107308
    On generation 0/200
    /Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py:457: RuntimeWarning: overflow encountered in power
      prob_ = 1.0 / (3.0 ** ((F_50_val - fitness) / (F_50_val - F_25_val)) + 1)
        (Explr) Top Fitness: 15.811199999999957
        (Explr) Top Smile: CCCCCCCCCCCCCCCCOP(=O)(O)Oc1ccc(C=Cc2ccc(OP(=O)(O)OCCCCCCCCCCCCCCCC)cc2)cc1
    Traceback (most recent call last):
      File "/Users/nsofroniew/Documents/code/chem/janus/tests/./example.py", line 81, in <module>
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 317, in run
        mut_smi_loc = self.mutate_smi_list(smiles_local_search, "local")
      File "/Users/nsofroniew/opt/anaconda3/envs/chem/lib/python3.9/site-packages/janus/janus.py", line 137, in mutate_smi_list
        smi_list = smi_list * num_random_samples
    numpy.core._exceptions._UFuncNoLoopError: ufunc 'multiply' did not contain a loop with signature matching types (dtype('<U98'), dtype('int64')) -> None
    

    It looks like smi_list has become a numpy array, which is unintended and it should be a list. This can be fixed by making this line https://github.com/aspuru-guzik-group/JANUS/blob/a52e5994a108063e3fc1d692752cea0ff0240120/src/janus/janus.py#L137 be

        smi_list = list(smi_list) * num_random_samples
    

    There could be other, more desirable fixes that avoid this problem altogether. I am happy to submit a PR if this fix is desired though.

    opened by sofroniewn 2
  • Unhandled exceptions and KeyError

    Unhandled exceptions and KeyError

    I tried running JANUS.py but got a number of exceptions. In addition, the script terminated with a KeyError.

    Initial population obtained!
    Forming Fragments!
        Fragment creation: 0/10000
        Fragment creation: 1000/10000
        Fragment creation: 2000/10000
        Fragment creation: 3000/10000
        Fragment creation: 4000/10000
        Fragment creation: 5000/10000
        Fragment creation: 6000/10000
        Fragment creation: 7000/10000
        Fragment creation: 8000/10000
        Fragment creation: 9000/10000
    Process Process-5:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_1]'
    	SELFIES: [S][C][=N][N][=C][Branch1][Ring1][C][C][C][Branch1][#Branch1][O][C][Branch1][C][C][=O][C][Branch1][C][C][Branch1][C][C][C][N][N][N][Branch3_1][C][C][=C][=C][Branch1][C][N][C][=C][Ring1][#Branch1][C][#Branch1][N]
    Process Process-7:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 124, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Expl=Ring3]'
    	SELFIES: [C][Expl=Ring3][=C][Branch2][Ring1][=Branch1][C][=C][C][=C][Branch1][#C][C][=C][Ring1][=Branch1][C][=C][C][=C][C][=C][Ring1][=Branch1][Ring1][=C][F][C][Branch1][C][C][C][C][C][N][Branch1][=Branch2][S][Branch1][C][C][=Branch1][C][=O][=O][C][C][Ring1][#Branch2][C][N][Branch1][Branch1][C][C][C][C][C][C][C][C]
    Process Process-4:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch1_3]'
    	SELFIES: [C][C][=C][Branch1][=Branch1][C][C][=Ring1][=Branch1][Branch1_3][C][C][=C][C][=C][Branch1][C][C][=C][C][=C][Branch1][C][N][C][=N][Ring1][#Branch1][#Branch2][C][N][C][O][C][C][Ring1][=Branch1][C][Branch1][C][O][=C][C][=C][Ring1][=C][O][Ring1][P]
    Process Process-6:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][C][=Branch1][#C][=C][C][=C][C][=Ring1][=Branch1][C][Branch1][C][F][Branch1][C][F][F][C][C][Branch1][C][C][=N][N][C][=Branch1][C][C][C][N][C][C][C][Branch1][C][N][C][C][Ring1][#Branch1][C][O][=C][C][Branch1][O][C][Branch3_2][C][N][C][C][O][C][C][Ring1][=Branch1][=O]
    Process Process-8:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_1]'
    	SELFIES: [C][=Branch1][C][=O][Branch1][C][O][C][N][C][=Branch1][C][=O][C][Branch2][Ring1][=Branch1][N][C][=Branch1][C][=O][C][Branch1][N][C][=C][C][=C][C][Branch2_1][Ring2][=N][Ring1][=Branch1][N][=N][O][C][Ring2][Ring1][C][S][C][C][=Ring2][Ring1][=Branch1][S][C][S][N][=C][Branch1][Ring2][N][=Ring1][Branch1][S][C][C][N]
    Process Process-11:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch2_3]'
    	SELFIES: [C][C][=C][C][Branch1][=C][C][N][Branch1][C][C][N][C][=Branch1][C][=O][C][S][C][C][C][Ring1][#Branch1][=C][C][=Ring1][O][C][=C][C][=C][C][=C][Ring1][=Branch1][O][C][=C][Branch2_3][Branch1]
    Process Process-10:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [F][C][=C][C][=C][Branch2][Ring2][O][C][N][C][Branch2][Ring2][Ring2][C][Branch1][#C][C][C][=C][Branch1][=Branch2][C][=C][C][=C][C][=Branch1][C][=O][N][Branch1][C][C][Branch3_3][C][Branch1][C][F][C][=Ring1][#Branch1][F][=N][C][C][Ring1][C][N][C][C][N][C][C][Ring1][=Branch1][=C][=N][C][=Branch1][Branch1][=N][C][=Ring1][=Branch1][N][Branch1][C][C][C][=O][C][=C][Ring2][Ring1][=N]
    Process Process-9:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 116, in _derive_mol_from_symbols
        init_state=binit_state, root_atom=prev_atom, rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_3]'
    	SELFIES: [C][C][Branch1][#Branch2][C][=C][C][=Branch1][Ring2][=C][=Branch1][F][=N][C][=C][Branch2][Ring2][Branch1][N][Branch1][Branch2][C][=N][C][Ring1][=Branch1][=Ring1][=C][N][=C][C][=C][C][=C][Branch1][P][C][=Branch1][Ring2][=C][Ring1][=Branch1][C][Branch3_3][C][N][=C][C][=C][C][=Ring1][=Branch1][O][C][O]
    On generation 0/200
        (Explr) Top Fitness: 1.0
        (Explr) Top Smile: C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C
    Process Process-27:
    Traceback (most recent call last):
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
        self.run()
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/multiprocessing/process.py", line 99, in run
        self._target(*self._args, **self._kwargs)
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 205, in calc_parr_prop
        props_collect[property_name][smile] = get_prop_material(smile, alphabet=alphabet, num_random_samples=num_random_samples, num_mutations=num_mutations)  # TODO: TESTING
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in get_prop_material
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/software/JANUS/mutate_parr.py", line 129, in 
        mutated_smiles = [decoder(x) for x in mutated_sf]
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 59, in decoder
        rings=rings
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 147, in _derive_mol_from_symbols
        _raise_decoder_error(selfies, symbol)
      File "/home/ubuntu/anaconda3/envs/reinvent.v3.2/lib/python3.7/site-packages/selfies/decoder.py", line 179, in _raise_decoder_error
        raise DecoderError(err_msg)
    selfies.exceptions.DecoderError: invalid symbol '[Branch3_2]'
    	SELFIES: [C][O][=C][N][C][N][C][=Branch1][C][=O][N][Branch1][=Branch1][N+1][=Branch1][C][=O][O-1][C][Ring1][=Branch2][N][Ring1][N][O][C][=C][C][C][N][C][N][C][N][C][=C][C][=C][Branch1][C][F][C][Branch1][C][F][=C][Ring1][Branch2][=N][C][Branch1][C][C][Branch3_2][Branch1][=Branch1][C][Branch1][C][C][=O][S][Ring1][=Branch2][=C][C][=Ring1][#Branch1][N][C][N][C][C][=C][C][=C][C][=C][Ring1][=Branch1][C][N][=C][Branch1][=C][SH1][Branch1][C][C][C][=C][C][=C][C][=C][Ring1][=Branch1][=Branch1][C][=C][N][=C][C][=Ring1][#Branch2][C]
    Traceback (most recent call last):
      File "./JANUS.py", line 308, in 
        mut_smi_dict_local  = mut_smi_dict_local[population[top_idx]]
    KeyError: 'C=C1N=CC=C(N=CNc2ccc(N)cc2)N=C(C)[SH]1C'
    
    opened by PatWalters 2
  • multiprocessing in windows

    multiprocessing in windows

    Hi. I was run the code, but I met errors in all codes that used multiprocessing. As I know these errors came from the difference of OS.

    Since I use Windows, I wonder how to correct the code for Windows.

    Thanks.

    opened by gunwook12 1
  • "aux" folder name should be changed to make the repository compatible with Windows.

    It looks like "aux" is a reserved word in Windows and directory of this name cannot be used. This is causing error, when I try to clone the repository.

    opened by sptiwari 1
  • Question: How sensitive is the model to molecule initialization?

    Question: How sensitive is the model to molecule initialization?

    Hello, great work! I'm excited to try this out for a chemical design project I'm working on. One question that I had after reading the pre-print— how sensitive is the model to molecule initialization?

    I read that you can start JANUS with random molecules or provide it with defined molecules. Did you perform any tests on what happens if the best molecule's scaffold was ablated from the initial bank of molecules? And how much, if at all, does rational initialization improve over random molecular initialization? Does this relate back to being trapped in local minima, and would the choice of initialization help explore more chemical space?

    Thank you!

    question 
    opened by jrhorne 1
Releases(v1)
Owner
Aspuru-Guzik group repo
Aspuru-Guzik group repo
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022