[TensorFlow 2] A Simple Baseline for Bayesian Uncertainty in Deep Learning: SWA-Gaussian (SWAG)
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"
Concept
Results
The red color and the blue color represent the initial state and current state respectively.
| Variable | MNIST | CIFAR10 |
![]() |
![]() |
|
![]() |
![]() |
|
![]() |
![]() |
|
![]() |
![]() |
Performance
MNIST
| Method | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| Final Epoch | 0.99230 | 0.99231 | 0.99222 | 0.99226 |
| Best Loss | 0.99350 | 0.99350 | 0.99338 | 0.99344 |
| SWAG (S = 30) | 0.99310 | 0.99305 | 0.99299 | 0.99302 |
| SWAG (Last Momentum) | 0.99340 | 0.99340 | 0.99330 | 0.99335 |
CIFAR10
| Method | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| Final Epoch | 0.73130 | 0.73349 | 0.73130 | 0.73147 |
| Best Loss | 0.73240 | 0.73205 | 0.73240 | 0.73099 |
| SWAG (S = 30) | 0.74100 | 0.74622 | 0.74100 | 0.74260 |
| SWAG (Last Momentum) | 0.73490 | 0.73888 | 0.73490 | 0.73561 |
Requirements
- Python 3.7.6
- Tensorflow 2.3.0
- Numpy 1.18.15
- whiteboxlayer 0.1.15
Reference
[1] Wesley Maddox et al. (2019). A Simple Baseline for Bayesian Uncertainty in Deep Learning. arXiv preprint arXiv:1902.02476.









