v objective diffusion inference code for PyTorch.

Overview

v-diffusion-pytorch

v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman).

The models are denoising diffusion probabilistic models (https://arxiv.org/abs/2006.11239), which are trained to reverse a gradual noising process, allowing the models to generate samples from the learned data distributions starting from random noise. DDIM-style deterministic sampling (https://arxiv.org/abs/2010.02502) is also supported. The models are also trained on continuous timesteps. They use the 'v' objective from Progressive Distillation for Fast Sampling of Diffusion Models (https://openreview.net/forum?id=TIdIXIpzhoI).

Thank you to stability.ai for compute to train these models!

Dependencies

Model checkpoints:

  • CC12M 256x256, SHA-256 63946d1f6a1cb54b823df818c305d90a9c26611e594b5f208795864d5efe0d1f

A 602M parameter CLIP conditioned model trained on Conceptual 12M for 3.1M steps.

Sampling

Example

If the model checkpoints are stored in checkpoints/, the following will generate an image:

./clip_sample.py "the rise of consciousness" --model cc12m_1 --seed 0

If they are somewhere else, you need to specify the path to the checkpoint with --checkpoint.

CLIP conditioned/guided sampling

usage: clip_sample.py [-h] [--images [IMAGE ...]] [--batch-size BATCH_SIZE]
                      [--checkpoint CHECKPOINT] [--clip-guidance-scale CLIP_GUIDANCE_SCALE]
                      [--device DEVICE] [--eta ETA] [--model {cc12m_1}] [-n N] [--seed SEED]
                      [--steps STEPS]
                      [prompts ...]

prompts: the text prompts to use. Relative weights for text prompts can be specified by putting the weight after a colon, for example: "the rise of consciousness:0.5".

--batch-size: sample this many images at a time (default 1)

--checkpoint: manually specify the model checkpoint file

--clip-guidance-scale: how strongly the result should match the text prompt (default 500). If set to 0, the cc12m_1 model will still be CLIP conditioned and sampling will go faster and use less memory.

--device: the PyTorch device name to use (default autodetects)

--eta: set to 0 for deterministic (DDIM) sampling, 1 (the default) for stochastic (DDPM) sampling, and in between to interpolate between the two. DDIM is preferred for low numbers of timesteps.

--images: the image prompts to use (local files or HTTP(S) URLs). Relative weights for image prompts can be specified by putting the weight after a colon, for example: "image_1.png:0.5".

--model: specify the model to use (default cc12m_1)

-n: sample until this many images are sampled (default 1)

--seed: specify the random seed (default 0)

--steps: specify the number of diffusion timesteps (default is 1000, can lower for faster but lower quality sampling)

Comments
  • Generated images are completely black?! 😵 What am I doing wrong?

    Generated images are completely black?! 😵 What am I doing wrong?

    Hello, I am on Windows 10, and my gpu is a PNY Nvidia GTX 1660 TI 6 Gb. I installed V-Diffusion like so:

    • conda create --name v-diffusion python=3.8
    • conda activate v-diffusion
    • conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch (as per Pytorch website instructions)
    • pip install requests tqdm

    The problem is that when I launch the cfg_sample.py or clip_sample.py command lines, the generated images are completely black, although the inference process seems to run nicely and without errors.

    Things I've tried:

    • installing previous pytorch version with conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
    • removing V-Diffusion conda environment completely and recreating it anew
    • uninstalling nvidia drivers and performing a new clean driver install (I tried both Nvidia Studio drivers and Nvidia Game Ready drivers)
    • uninstalling and reinstalling Conda completely

    But nothing helped... and at this point I don't know what else to try...

    The only interesting piece of information I could gather is that for some reason this problem also happens with another text-to-image project called Big Sleep where similar to V-Diffusion the inference process appears to run correctly but the generated images are all black.

    I think there must be some simple detail I'm overlooking... which it's making me go insane... 😵 Please let me know something if you think you can help! THANKS !

    opened by illtellyoulater 10
  • what does this line mean in README?

    what does this line mean in README?

    A weight of 1 will sample images that match the prompt roughly as well as images usually match prompts like that in the training set.

    I can't wrap my head around this sentence. Could you please explain it with different wording? Thanks!

    opened by illtellyoulater 2
  • AttributeError: module 'torch' has no attribute 'special'

    AttributeError: module 'torch' has no attribute 'special'

    torch version: 1.8.1+cu111

    python ./cfg_sample.py "the rise of consciousness":5 -n 4 -bs 4 --seed 0 Using device: cuda:0 Traceback (most recent call last): File "./cfg_sample.py", line 154, in main() File "./cfg_sample.py", line 148, in main run_all(args.n, args.batch_size) File "./cfg_sample.py", line 136, in run_all steps = utils.get_spliced_ddpm_cosine_schedule(t) File "C:\Users\m\Desktop\v-diffusion-pytorch\diffusion\utils.py", line 75, in get_spliced_ddpm_cosine_schedule ddpm_part = get_ddpm_schedule(big_t + ddpm_crossover - cosine_crossover) File "C:\Users\m\Desktop\v-diffusion-pytorch\diffusion\utils.py", line 65, in get_ddpm_schedule log_snr = -torch.special.expm1(1e-4 + 10 * ddpm_t**2).log() AttributeError: module 'torch' has no attribute 'special'

    opened by tempdeltavalue 2
  • Add github action to automatically push to pypi on Release x.y.z commit

    Add github action to automatically push to pypi on Release x.y.z commit

    you need to create a token there https://pypi.org/manage/account/token/ and put it in there https://github.com/crowsonkb/v-diffusion-pytorch/settings/secrets/actions/new name it PYPI_PASSWORD

    The release will be triggered when you name your commit Release x.y.z I advise to change the version in setup.cfg in that commit

    opened by rom1504 0
  • [Question] What's the meaning of these equations in sample and cfg_model_fn(from sample.py )

    [Question] What's the meaning of these equations in sample and cfg_model_fn(from sample.py )

    Hello, thank you for your great work! I have a little puzzle in sample.py `# Get the model output (v, the predicted velocity) with torch.cuda.amp.autocast(): v = model(x, ts * steps[i], **extra_args).float()

        # Predict the noise and the denoised image
        pred = x * alphas[i] - v * sigmas[i]
        eps = x * sigmas[i] + v * alphas[i]`
    

    what the meaning ? Where it comes?

    opened by zhangquanwei962 0
  • Images don’t seem to evolve with each iteration

    Images don’t seem to evolve with each iteration

    Thanks for sharing such an amazing repo!

    I am testing a prompt like openAI “an astronaut riding a horse in a photorealistic style” to compare. But somehow the iterations seems to be stuck on the same image.

    This is my first test, so could very likely be that I am doing something wrong. Results and settings attached bellow…

    B5B8DE32-AF99-4D4C-BEB5-B9F131916845 2F55B7E2-7DB5-42CA-9B75-7384FDEB9303 B752B2AC-75A4-4F1C-A538-523B4249370E 6DC4FB56-9CDF-4F91-90A4-35C8F4D97FA5

    opened by alelordelo 0
  • [Question] Questions about `zero_embed` and `weights`

    [Question] Questions about `zero_embed` and `weights`

    Thanks for this great work. I'm recently interested in using diffusion model to generate images iteratively. I found your script cfg_sample.py was a nice implementation and I decided to learn from it. However, because I'm new in this field, I've encountered some problems quite hard to understand for me. It'd be great if some hints/suggestions are provided. Thank you!! My questions are listed below. They're about the script cfg_sample.py.

    1. I noticed in the codes, we've used zero_embed as one of the features for conditioning. What is the purpose of using it? Is it designed to allow the case of no prompt for input?
    2. I also notice that the weight of zero_embed is computed as 1 - sum(weights), I think the 1 is to make them sum to one, but actually the weight of zero_embed could be a negative number, should weights be normalized before all the intermediate noise maps are weighted?

    Thanks very much!!

    opened by Karbo123 4
  • Metrics on WikiArt model

    Metrics on WikiArt model

    Hi!

    I wanted to thank you for your work, especially since without you DiscoDiffusion wouldn't exist !

    Still, I was wondering if you had the metrics (Precision, Recall, FID and Inception Score) on the 256x256 WikiArt model ?

    opened by Maxim-Durand 0
  • Any idea on how to attach a clip model to a 64x64 unconditional model from openai/improved-diffusion?

    Any idea on how to attach a clip model to a 64x64 unconditional model from openai/improved-diffusion?

    Hey! love your work and been following your stuff for a while. I have finetuned a 64x64 unconditional model from openai/improved diffusion. checkpoint

    I was curious if you could lend any insight on how to connect CLIP guidance to my model? I have tried repurposing your notebook (https://colab.research.google.com/drive/12a_Wrfi2_gwwAuN3VvMTwVMz9TfqctNj#scrollTo=1YwMUyt9LHG1) however past 100 steps, my models seems to unconverge.

    I think perhaps because there is too much noise being added for the smaller image size? How might i fix this?

    opened by DeepTitan 0
Releases(v0.0.2)
Owner
Katherine Crowson
AI/generative artist.
Katherine Crowson
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022