MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

Related tags

Deep LearningMatchGAN
Overview

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

This repository is the official implementation of MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network.

alt text

This repository is built upon the framework of StarGAN.

1. Cloning the repository

Clone the repository and navigate to it.

$ git clone https://github.com/justin941208/MatchGAN.git
$ cd MatchGAN/

2. Installing requirements

The following libraries should be separately installed. Instructions are available on their respective websites:

Additional requirements can be installed by running:

pip install -r requirements.txt

To evaluate MatchGAN using GAN-train and GAN-test, the following files should be downloaded and unzipped directly under MatchGAN/.

2. Downloading the datasets

To download the CelebA dataset:

$ bash download.sh

In addition, the partition file list_eval_partition.txt should be downloaded from the official CelebA google drive and placed immediately under the directory ./data/celeba/.

To download the RaFD dataset, one must request access to the dataset from the Radboud Faces Database website. Once all the image files are obtained, they need to be placed under the subdirectory ./data/RaFD/data. To preprocess the dataset, run the following command:

$ python preprocess_rafd.py

This will crop all images to 256x256 (centred on face) and split the data into 90% for training and 10% for testing.

3. Training

The command format for training MatchGAN is given by:

$ ./run [dataset] [mode] [labelled percentage] [device]

For example, to train MatchGAN on CelebA with 5% of the training examples labelled on GPU 0, run the following command:

$ ./run celeba train 5 0

To train on RaFD, simply replace "celeba" by "rafd".

4. Testing and evaluating

To test MatchGAN following the above example on CelebA, run the command

$ ./run celeba test 5 0

This will generate synthetic images from the test set and save them to the directory ./matchgan_celeba/results.

To evaluate the model using Frechet Inception Distance (FID), Inception Score (IS), and GAN-test, run the following command:

$ ./run celeba eval 5 0

The following commands trains an external classifier using the synthetic images generated by MatchGAN and then evaluates GAN-train.

$ ./run celeba synth 5 0
$ ./run celeba synth_test 5 0

5. Pretrained model

Pretrained models of MatchGAN (generator only) can be downloaded from this link. To test or evaluate these models, the checkpoint file 200000-G.ckpt should be placed under the directory ./matchgan_celeba/models (for CelebA) or ./matchgan_rafd/models (for RaFD) before running the relevant commands detailed above.

6. Results

Here are some of the results of our pre-trained model from the previous section.

FID

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 12.31 9.34 8.81 6.34 - 5.58
RaFD - - 22.75 9.94 6.65 5.06

IS

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 2.95 2.95 2.99 3.03 - 3.07
RaFD - - 1.64 1.61 1.59 1.58

GAN-train and GAN-test

These numbers are obtained under the 100% setup.

GAN-train GAN-test
CelebA 87.43% 82.26%
RaFD 97.78% 75.95%
Owner
Justin Sun
PhD student
Justin Sun
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices

Face-Mesh Face Mesh is a face geometry solution that estimates 468 3D face landmarks in real-time even on mobile devices. It employs machine learning

Farnam Javadi 9 Dec 21, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
The implementation of "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Band Speech Enhancement"

SF-Net for fullband SE This is the repo of the manuscript "Optimizing Shoulder to Shoulder: A Coordinated Sub-Band Fusion Model for Real-Time Full-Ban

Guochen Yu 36 Dec 02, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
A simple pytorch pipeline for semantic segmentation.

SegmentationPipeline -- Pytorch A simple pytorch pipeline for semantic segmentation. Requirements : torch=1.9.0 tqdm albumentations=1.0.3 opencv-pyt

petite7 4 Feb 22, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022