MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

Related tags

Deep LearningMatchGAN
Overview

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

This repository is the official implementation of MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network.

alt text

This repository is built upon the framework of StarGAN.

1. Cloning the repository

Clone the repository and navigate to it.

$ git clone https://github.com/justin941208/MatchGAN.git
$ cd MatchGAN/

2. Installing requirements

The following libraries should be separately installed. Instructions are available on their respective websites:

Additional requirements can be installed by running:

pip install -r requirements.txt

To evaluate MatchGAN using GAN-train and GAN-test, the following files should be downloaded and unzipped directly under MatchGAN/.

2. Downloading the datasets

To download the CelebA dataset:

$ bash download.sh

In addition, the partition file list_eval_partition.txt should be downloaded from the official CelebA google drive and placed immediately under the directory ./data/celeba/.

To download the RaFD dataset, one must request access to the dataset from the Radboud Faces Database website. Once all the image files are obtained, they need to be placed under the subdirectory ./data/RaFD/data. To preprocess the dataset, run the following command:

$ python preprocess_rafd.py

This will crop all images to 256x256 (centred on face) and split the data into 90% for training and 10% for testing.

3. Training

The command format for training MatchGAN is given by:

$ ./run [dataset] [mode] [labelled percentage] [device]

For example, to train MatchGAN on CelebA with 5% of the training examples labelled on GPU 0, run the following command:

$ ./run celeba train 5 0

To train on RaFD, simply replace "celeba" by "rafd".

4. Testing and evaluating

To test MatchGAN following the above example on CelebA, run the command

$ ./run celeba test 5 0

This will generate synthetic images from the test set and save them to the directory ./matchgan_celeba/results.

To evaluate the model using Frechet Inception Distance (FID), Inception Score (IS), and GAN-test, run the following command:

$ ./run celeba eval 5 0

The following commands trains an external classifier using the synthetic images generated by MatchGAN and then evaluates GAN-train.

$ ./run celeba synth 5 0
$ ./run celeba synth_test 5 0

5. Pretrained model

Pretrained models of MatchGAN (generator only) can be downloaded from this link. To test or evaluate these models, the checkpoint file 200000-G.ckpt should be placed under the directory ./matchgan_celeba/models (for CelebA) or ./matchgan_rafd/models (for RaFD) before running the relevant commands detailed above.

6. Results

Here are some of the results of our pre-trained model from the previous section.

FID

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 12.31 9.34 8.81 6.34 - 5.58
RaFD - - 22.75 9.94 6.65 5.06

IS

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 2.95 2.95 2.99 3.03 - 3.07
RaFD - - 1.64 1.61 1.59 1.58

GAN-train and GAN-test

These numbers are obtained under the 100% setup.

GAN-train GAN-test
CelebA 87.43% 82.26%
RaFD 97.78% 75.95%
Owner
Justin Sun
PhD student
Justin Sun
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
Large-scale Hyperspectral Image Clustering Using Contrastive Learning, CIKM 21 Workshop

Spectral-spatial contrastive clustering (SSCC) Yaoming Cai, Yan Liu, Zijia Zhang, Zhihua Cai, and Xiaobo Liu, Large-scale Hyperspectral Image Clusteri

Yaoming Cai 4 Nov 02, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Microscopy Image Cytometry Toolkit

Cytokit Cytokit is a collection of tools for quantifying and analyzing properties of individual cells in large fluorescent microscopy datasets with a

Hammer Lab 106 Jan 06, 2023
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022