GBIM(Gesture-Based Interaction map)

Overview

GBIM

Python 3.6 PaddleX License

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

手势

手势 交互 手势 交互 手势 交互
向上滑动 向左滑动 地图放大
手势 交互 手势 交互 手势 交互
向下滑动 向右滑动 地图缩小

进度安排

基础

  • 确认用于交互的手势。
  • 使用det_acq.py采集一些电脑摄像头拍摄的人手姿势数据。
  • 数据标注,训练手的目标检测模型
  • 捕获目标手,使用clas_acq.py获取手部图像进行标注,并用于训练手势分类模型。
  • 交互手势的检测与识别组合验证。
  • 打开百度地图网页版,进行模拟按键交互。
  • 组合功能,验证基本功能。

进阶

  • 将图像分类改为序列图像分类,提高手势识别的流畅度和准确度。
  • 重新采集和标注数据,调参训练模型。
  • 搭建可用于参数调节的地图。
  • 界面整合,整理及美化。

数据集 & 模型

手势检测

  • 数据集使用来自联想小新笔记本摄像头采集的数据,使用labelImg标注为VOC格式,共1011张。该数据集场景、环境和人物单一,仅作为测试使用,不提供数据集下载。数据组织参考PaddelX下的PascalVOC数据组织方式。
  • 模型使用超轻量级PPYOLO Tiny,模型大小小于4MB,随便训练了100轮后保留best_model作为测试模型,由于数据集和未调参训练的原因,当前默认识别效果较差

手势分类

  • 数据集使用来自联想小新笔记本摄像头采集的数据,通过手势检测模型提出出手图像,人工分为7类,分别为6种交互手势以及“其他”,共1102张。该数据集数量较少,手型及手势单一,仅作为测试使用,不提供数据集下载。数据组织形式如下:
dataset
	├-- Images
	|     ├-- up
	┆     ┆    └-- xxx.jpg
	|     └-- other
	┆          └-- xxx.jpg
	├-- labels.txt
	├-- train_list.txt
	└-- val_list.txt
  • 模型使用超轻量级MobileNet V3 small,模型大小小于7MB,由于数据量很小,随便训练了20轮后保留best_model作为测试模型,当前识别分类效果较差

模型文件上传使用LFS,下拉时注意需要安装LFS,参考LFS文档。后续将重新采集和标注更加多样的大量数据集,并采用更好的调参方法获得更加准确的识别模型

演示

手势识别

地图交互

*未显示Capture界面

使用

  1. 克隆当前项目到本地,按照requirements.txt安装所依赖的包opencv、paddlex以及pynput。PaddleX对应请安装最新版的PaddlePaddle,由于模型轻量,CPU版本足矣,参考下面代码,细节参考官方网站
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  1. 进入demo.py,将浏览器路径修改为自己使用的浏览器路径:
web_path = '"D:/Twinkstar/Twinkstar Browser/twinkstar.exe"'  # 自己的浏览器路径
  1. 运行demo.py启动程序:
cd GBIM
python demo.py

常见问题及解决

  1. Q: 拉项目时卡住不动

    A:首先确认按照文档安装LFS。如果已经安装那极大可能是网络问题,可以等待一段时间,或先跳过LFS文件,再单独拉取,参考下面git代码:

    // 开启跳过无法clone的LFS文件
    git lfs install --skip-smudge 
    // clone当前项目
    git clone "current project" 
    // 进入当前项目,单独拉取LFS文件
    cd "current project" 
    git lfs pull 
    // 恢复LFS设置
    git lfs install --force
  2. Q:按q或者手势交互无效

    A:请注意当前鼠标点击的焦点,焦点在Capture,则接受q退出;焦点在浏览器,则交互结果将驱动浏览器中的地图进行变换。

  3. Q:安装PaddleX时报错,关于MV C++

    A:若在Windows下安装coco tool时报错,则可能缺少Microsoft Visual C++,可在微软官方下载网页进行下载安装后重启,即可解决。

  4. Q:运行未报错,但没有保存数据到本地

    A:请检查路径是否有中文,cv2.imwrite保存图像时不能有中文路径。

参考

  1. 玩腻了小游戏?Paddle手势识别玩转游戏玩出新花样!
  2. https://github.com/PaddlePaddle/PaddleX

交流与反馈

Email:[email protected]

Who calls the shots? Rethinking Few-Shot Learning for Audio (WASPAA 2021)

rethink-audio-fsl This repo contains the source code for the paper "Who calls the shots? Rethinking Few-Shot Learning for Audio." (WASPAA 2021) Table

Yu Wang 34 Dec 24, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Everything's Talkin': Pareidolia Face Reenactment (CVPR2021)

Everything's Talkin': Pareidolia Face Reenactment (CVPR2021) Linsen Song, Wayne Wu, Chaoyou Fu, Chen Qian, Chen Change Loy, and Ran He [Paper], [Video

71 Dec 21, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
This is the official PyTorch implementation of the paper "TransFG: A Transformer Architecture for Fine-grained Recognition" (Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, Changhu Wang, Alan Yuille).

TransFG: A Transformer Architecture for Fine-grained Recognition Official PyTorch code for the paper: TransFG: A Transformer Architecture for Fine-gra

Ju He 307 Jan 03, 2023
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022