GBIM(Gesture-Based Interaction map)

Overview

GBIM

Python 3.6 PaddleX License

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

手势

手势 交互 手势 交互 手势 交互
向上滑动 向左滑动 地图放大
手势 交互 手势 交互 手势 交互
向下滑动 向右滑动 地图缩小

进度安排

基础

  • 确认用于交互的手势。
  • 使用det_acq.py采集一些电脑摄像头拍摄的人手姿势数据。
  • 数据标注,训练手的目标检测模型
  • 捕获目标手,使用clas_acq.py获取手部图像进行标注,并用于训练手势分类模型。
  • 交互手势的检测与识别组合验证。
  • 打开百度地图网页版,进行模拟按键交互。
  • 组合功能,验证基本功能。

进阶

  • 将图像分类改为序列图像分类,提高手势识别的流畅度和准确度。
  • 重新采集和标注数据,调参训练模型。
  • 搭建可用于参数调节的地图。
  • 界面整合,整理及美化。

数据集 & 模型

手势检测

  • 数据集使用来自联想小新笔记本摄像头采集的数据,使用labelImg标注为VOC格式,共1011张。该数据集场景、环境和人物单一,仅作为测试使用,不提供数据集下载。数据组织参考PaddelX下的PascalVOC数据组织方式。
  • 模型使用超轻量级PPYOLO Tiny,模型大小小于4MB,随便训练了100轮后保留best_model作为测试模型,由于数据集和未调参训练的原因,当前默认识别效果较差

手势分类

  • 数据集使用来自联想小新笔记本摄像头采集的数据,通过手势检测模型提出出手图像,人工分为7类,分别为6种交互手势以及“其他”,共1102张。该数据集数量较少,手型及手势单一,仅作为测试使用,不提供数据集下载。数据组织形式如下:
dataset
	├-- Images
	|     ├-- up
	┆     ┆    └-- xxx.jpg
	|     └-- other
	┆          └-- xxx.jpg
	├-- labels.txt
	├-- train_list.txt
	└-- val_list.txt
  • 模型使用超轻量级MobileNet V3 small,模型大小小于7MB,由于数据量很小,随便训练了20轮后保留best_model作为测试模型,当前识别分类效果较差

模型文件上传使用LFS,下拉时注意需要安装LFS,参考LFS文档。后续将重新采集和标注更加多样的大量数据集,并采用更好的调参方法获得更加准确的识别模型

演示

手势识别

地图交互

*未显示Capture界面

使用

  1. 克隆当前项目到本地,按照requirements.txt安装所依赖的包opencv、paddlex以及pynput。PaddleX对应请安装最新版的PaddlePaddle,由于模型轻量,CPU版本足矣,参考下面代码,细节参考官方网站
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
  1. 进入demo.py,将浏览器路径修改为自己使用的浏览器路径:
web_path = '"D:/Twinkstar/Twinkstar Browser/twinkstar.exe"'  # 自己的浏览器路径
  1. 运行demo.py启动程序:
cd GBIM
python demo.py

常见问题及解决

  1. Q: 拉项目时卡住不动

    A:首先确认按照文档安装LFS。如果已经安装那极大可能是网络问题,可以等待一段时间,或先跳过LFS文件,再单独拉取,参考下面git代码:

    // 开启跳过无法clone的LFS文件
    git lfs install --skip-smudge 
    // clone当前项目
    git clone "current project" 
    // 进入当前项目,单独拉取LFS文件
    cd "current project" 
    git lfs pull 
    // 恢复LFS设置
    git lfs install --force
  2. Q:按q或者手势交互无效

    A:请注意当前鼠标点击的焦点,焦点在Capture,则接受q退出;焦点在浏览器,则交互结果将驱动浏览器中的地图进行变换。

  3. Q:安装PaddleX时报错,关于MV C++

    A:若在Windows下安装coco tool时报错,则可能缺少Microsoft Visual C++,可在微软官方下载网页进行下载安装后重启,即可解决。

  4. Q:运行未报错,但没有保存数据到本地

    A:请检查路径是否有中文,cv2.imwrite保存图像时不能有中文路径。

参考

  1. 玩腻了小游戏?Paddle手势识别玩转游戏玩出新花样!
  2. https://github.com/PaddlePaddle/PaddleX

交流与反馈

Email:[email protected]

AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
wlad 2 Dec 19, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021