Music source separation is a task to separate audio recordings into individual sources

Overview

Music Source Separation

Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmementation of music source separation. Users can separate their favorite songs into different sources by installing this repository. In addition, users can train their own music source separation systems using this repository. This repository also includes speech enhancement, instruments separation, etc.

Demos

Vocals and accompaniment separation: https://www.youtube.com/watch?v=WH4m5HYzHsg

Separation

Users can easily separate their favorite audio recordings into vocals and accompaniment using the pretrained checkpoints.

Method 1. Separate by installing the package

python3 setup.py install
python3 separate_scripts/separate.py 
    --audio_path="./resources/vocals_accompaniment_10s.mp3" 
    --source_type="accompaniment"

Method 2. Separate by using the source code

1. Install dependencies

pip install -r requirements.txt

2. Download checkpoints

./separate_scripts/download_checkpoints.sh

3. Separate vocals and accompaniment

./separate_scripts/separate_vocals.sh "resources/vocals_accompaniment_10s.mp3" "sep_vocals.mp3"
./separate_scripts/separate_accompaniment.sh "resources/vocals_accompaniment_10s.mp3" "sep_accompaniment.mp3"

Train a music source separation system from scratch

1. Download dataset

We use the MUSDB18 dataset to train music source separation systems. The trained system can be used to separate vocals, accompaniments, bass, and other sources. Execute the following script to download and decompress the MUSDB18 dataset:

./scripts/0_download_datasets/musdb18.sh

The dataset looks like:

./datasets/musdb18
├── train (100 files)
│   ├── 'A Classic Education - NightOwl.stem.mp4'
│   └── ...
├── test (50 files)
│   ├── 'Al James - Schoolboy Facination.stem.mp4'
│   └── ...
└── README.md

2. Pack audio files into hdf5 files

We pack audio waveforms into hdf5 files to speed up training.

."/scripts/1_pack_audios_to_hdf5s/musdb18/sr=44100,chn=2.sh"

3. Create indexes for training

./scripts/2_create_indexes/musdb18/create_indexes.sh

3. Create evaluation audios

./scripts/3_create_evaluation_audios/musdb18/create_evaluation_audios.sh

4. Train & evaluate & save checkpoints

./scripts/4_train/musdb18/train.sh

5. Inference

./scripts/5_inference/musdb18/inference.sh

##

Results

Model Size (MB) SDR (dB) process 1s time (GPU Tesla V100) process 1s time (CPU Core i7)
ResUNet143 vocals 461 8.9 0.036 2.513
ResUNet143 acc. 461 16.8 0.036 2.513
ResUNet143 Subband vocals 414 8.8 0.012 0.614
ResUNet143 Subband acc. 414 16.4 0.012 0.614

Reference

[1] Qiuqiang Kong, Yin Cao, Haohe Liu, Keunwoo Choi, Yuxuan Wang, Decoupling Magnitude and Phase Estimation with Deep ResUNet for Music Source Separation, International Society for Music Information Retrieval (ISMIR), 2021.

@inproceedings{kong2021decoupling,
  title={Decoupling Magnitude and Phase Estimation with Deep ResUNet for Music Source Separation.},
  author={Kong, Qiuqiang and Cao, Yin and Liu, Haohe and Choi, Keunwoo and Wang, Yuxuan },
  booktitle={ISMIR},
  year={2021},
  organization={Citeseer}
}

FAQ

On Mac OSX, if users met "ModuleNotFoundError: No module named ..." error, then execute the following commands:

PYTHONPATH="./"
export PYTHONPATH
Owner
Bytedance Inc.
Bytedance Inc.
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023