Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

Overview

SCAPT-ABSA

Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

Overview

In this repository, we provide code for Superived ContrAstive Pre-Training (SCAPT) and aspect-aware fine-tuning, retrieved sentiment corpora from YELP/Amazon reviews, and SemEval2014 Restaurant/Laptop with addtional implicit_sentiment labeling.

SCAPT aims to tackle implicit sentiments expression in aspect-based sentiment analysis(ABSA). In our work, we define implicit sentiment as sentiment expressions that contain no polarity markers but still convey clear human-aware sentiment polarity.

Here are examples for explicit and implicit sentiment in ABSA:

examples

SCAPT

SCAPT gives an aligned representation of sentiment expressions with the same sentiment label, which consists of three objectives:

  • Supervised Contrastive Learning (SCL)
  • Review Reconstruction (RR)
  • Masked Aspect Prediction (MAP)
SCAPT

Aspect-aware Fine-tuning

Sentiment representation and aspect-based representation are taken into account for sentiment prediction in aspect-aware fine-tuning.

Aspect_fine-tuning

Requirement

  • cuda 11.0
  • python 3.7.9
    • lxml 4.6.2
    • numpy 1.19.2
    • pytorch 1.8.0
    • pyyaml 5.3.1
    • tqdm 4.55.0
    • transformers 4.2.2

Data Preparation & Preprocessing

For Pre-training

Retrieved sentiment corpora contain millions-level reviews, we provide download links for original corpora and preprocessed data. Download if you want to do pre-training and further use them:

File Google Drive Link Baidu Wangpan Link Baidu Wangpan Code
scapt_yelp_json.zip link link q7fs
scapt_amazon_json.zip link link i1da
scapt_yelp_pkl.zip link link j9ce
scapt_amazon_pkl.zip link link 3b8t

These pickle files can also be generated from json files by the preprocessing method:

bash preprocess.py --pretrain

For Fine-tuning

We have already combined the opinion term labeling to the original SemEval2014 datasets. For example:

    <sentence id="1634">
        <text>The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not.</text>
        <aspectTerms>
            <aspectTerm term="food" polarity="positive" from="4" to="8" implicit_sentiment="False" opinion_words="exceptional"/>
            <aspectTerm term="kitchen" polarity="positive" from="55" to="62" implicit_sentiment="False" opinion_words="capable"/>
            <aspectTerm term="menu" polarity="neutral" from="141" to="145" implicit_sentiment="True"/>
        </aspectTerms>
        <aspectCategories>
            <aspectCategory category="food" polarity="positive"/>
        </aspectCategories>
    </sentence>

implicit_sentiment indicates whether it is an implicit sentiment expression and yield opinion_words if not implicit. The opinion_words lebaling is credited to TOWE.

Both original and extended fine-tuning data and preprocessed dumps are uploaded to this repository.

Consequently, the structure of your data directory should be:

├── Amazon
│   ├── amazon_laptops.json
│   └── amazon_laptops_preprocess_pretrain.pkl
├── laptops
│   ├── Laptops_Test_Gold_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Laptops_Test_Gold_Implicit_Labeled.xml
│   ├── Laptops_Test_Gold.xml
│   ├── Laptops_Train_v2_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Laptops_Train_v2_Implicit_Labeled.xml
│   └── Laptops_Train_v2.xml
├── MAMS
│   ├── test_preprocess_finetune.pkl
│   ├── test.xml
│   ├── train_preprocess_finetune.pkl
│   ├── train.xml
│   ├── val_preprocess_finetune.pkl
│   └── val.xml
├── restaurants
│   ├── Restaurants_Test_Gold_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Restaurants_Test_Gold_Implicit_Labeled.xml
│   ├── Restaurants_Test_Gold.xml
│   ├── Restaurants_Train_v2_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Restaurants_Train_v2_Implicit_Labeled.xml
│   └── Restaurants_Train_v2.xml
└── YELP
    ├── yelp_restaurants.json
    └── yelp_restaurants_preprocess_pretrain.pkl

Pre-training

The pre-training is conducted on multiple GPUs.

  • Pre-training [TransEnc|BERT] on [YELP|Amazon]:

    python -m torch.distributed.launch --nproc_per_node=${THE_CARD_NUM_YOU_HAVE} multi_card_train.py --config config/[yelp|amazon]_[TransEnc|BERT]_pretrain.yml

Model checkpoints are saved in results.

Fine-tuning

  • Directly train [TransEnc|BERT] on [Restaurants|Laptops|MAMS] As [TransEncAsp|BERTAsp]:

    python train.py --config config/[restaurants|laptops|mams]_[TransEnc|BERT]_finetune.yml
  • Fine-tune the pre-trained [TransEnc|BERT] on [Restaurants|Laptops|MAMS] As [TransEncAsp+SCAPT|BERTAsp+SCAPT]:

    python train.py --config config/[restaurants|laptops|mams]_[TransEnc|BERT]_finetune.yml --checkpoint PATH/TO/MODEL_CHECKPOINT

Model checkpoints are saved in results.

Evaluation

  • Evaluate [TransEnc|BERT]-based model on [Restaurants|Laptops|MAMS] dataset:

    python evaluate.py --config config/[restaurants|laptops|mams]_[TransEnc|BERT]_finetune.yml --checkpoint PATH/TO/MODEL_CHECKPOINT

Our model parameters:

Model Dataset File Google Drive Link Baidu Wangpan Link Baidu Wangpan Code
TransEncAsp+SCAPT SemEval2014 Restaurant TransEnc_restaurants.zip link link 5e5c
TransEncAsp+SCAPT SemEval2014 Laptop TransEnc_laptops.zip link link 8amq
TransEncAsp+SCAPT MAMS TransEnc_MAMS.zip link link bf2x
BERTAsp+SCAPT SemEval2014 Restaurant BERT_restaurants.zip link link 1w2e
BERTAsp+SCAPT SemEval2014 Laptop BERT_laptops.zip link link zhte
BERTAsp+SCAPT MAMS BERT_MAMS.zip link link 1iva

Citation

If you found this repository useful, please cite our paper:

@inproceedings{li-etal-2021-learning-implicit,
    title = "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training",
    author = "Li, Zhengyan  and
      Zou, Yicheng  and
      Zhang, Chong  and
      Zhang, Qi  and
      Wei, Zhongyu",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.22",
    pages = "246--256",
    abstract = "Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30{\%} of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.",
}
Owner
Zhengyan Li
Zhengyan Li
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in Video".

Consistent Depth of Moving Objects in Video This repository contains training code for the SIGGRAPH 2021 paper "Consistent Depth of Moving Objects in

Google 203 Jan 05, 2023
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
PyElecCL - Electron Monte Carlo Second Checks

PyElecCL Python program to perform second checks for electron Monte Carlo radiat

Reese Haywood 3 Feb 22, 2022