Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

Overview

SCAPT-ABSA

Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

Overview

In this repository, we provide code for Superived ContrAstive Pre-Training (SCAPT) and aspect-aware fine-tuning, retrieved sentiment corpora from YELP/Amazon reviews, and SemEval2014 Restaurant/Laptop with addtional implicit_sentiment labeling.

SCAPT aims to tackle implicit sentiments expression in aspect-based sentiment analysis(ABSA). In our work, we define implicit sentiment as sentiment expressions that contain no polarity markers but still convey clear human-aware sentiment polarity.

Here are examples for explicit and implicit sentiment in ABSA:

examples

SCAPT

SCAPT gives an aligned representation of sentiment expressions with the same sentiment label, which consists of three objectives:

  • Supervised Contrastive Learning (SCL)
  • Review Reconstruction (RR)
  • Masked Aspect Prediction (MAP)
SCAPT

Aspect-aware Fine-tuning

Sentiment representation and aspect-based representation are taken into account for sentiment prediction in aspect-aware fine-tuning.

Aspect_fine-tuning

Requirement

  • cuda 11.0
  • python 3.7.9
    • lxml 4.6.2
    • numpy 1.19.2
    • pytorch 1.8.0
    • pyyaml 5.3.1
    • tqdm 4.55.0
    • transformers 4.2.2

Data Preparation & Preprocessing

For Pre-training

Retrieved sentiment corpora contain millions-level reviews, we provide download links for original corpora and preprocessed data. Download if you want to do pre-training and further use them:

File Google Drive Link Baidu Wangpan Link Baidu Wangpan Code
scapt_yelp_json.zip link link q7fs
scapt_amazon_json.zip link link i1da
scapt_yelp_pkl.zip link link j9ce
scapt_amazon_pkl.zip link link 3b8t

These pickle files can also be generated from json files by the preprocessing method:

bash preprocess.py --pretrain

For Fine-tuning

We have already combined the opinion term labeling to the original SemEval2014 datasets. For example:

    <sentence id="1634">
        <text>The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not.</text>
        <aspectTerms>
            <aspectTerm term="food" polarity="positive" from="4" to="8" implicit_sentiment="False" opinion_words="exceptional"/>
            <aspectTerm term="kitchen" polarity="positive" from="55" to="62" implicit_sentiment="False" opinion_words="capable"/>
            <aspectTerm term="menu" polarity="neutral" from="141" to="145" implicit_sentiment="True"/>
        </aspectTerms>
        <aspectCategories>
            <aspectCategory category="food" polarity="positive"/>
        </aspectCategories>
    </sentence>

implicit_sentiment indicates whether it is an implicit sentiment expression and yield opinion_words if not implicit. The opinion_words lebaling is credited to TOWE.

Both original and extended fine-tuning data and preprocessed dumps are uploaded to this repository.

Consequently, the structure of your data directory should be:

├── Amazon
│   ├── amazon_laptops.json
│   └── amazon_laptops_preprocess_pretrain.pkl
├── laptops
│   ├── Laptops_Test_Gold_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Laptops_Test_Gold_Implicit_Labeled.xml
│   ├── Laptops_Test_Gold.xml
│   ├── Laptops_Train_v2_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Laptops_Train_v2_Implicit_Labeled.xml
│   └── Laptops_Train_v2.xml
├── MAMS
│   ├── test_preprocess_finetune.pkl
│   ├── test.xml
│   ├── train_preprocess_finetune.pkl
│   ├── train.xml
│   ├── val_preprocess_finetune.pkl
│   └── val.xml
├── restaurants
│   ├── Restaurants_Test_Gold_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Restaurants_Test_Gold_Implicit_Labeled.xml
│   ├── Restaurants_Test_Gold.xml
│   ├── Restaurants_Train_v2_Implicit_Labeled_preprocess_finetune.pkl
│   ├── Restaurants_Train_v2_Implicit_Labeled.xml
│   └── Restaurants_Train_v2.xml
└── YELP
    ├── yelp_restaurants.json
    └── yelp_restaurants_preprocess_pretrain.pkl

Pre-training

The pre-training is conducted on multiple GPUs.

  • Pre-training [TransEnc|BERT] on [YELP|Amazon]:

    python -m torch.distributed.launch --nproc_per_node=${THE_CARD_NUM_YOU_HAVE} multi_card_train.py --config config/[yelp|amazon]_[TransEnc|BERT]_pretrain.yml

Model checkpoints are saved in results.

Fine-tuning

  • Directly train [TransEnc|BERT] on [Restaurants|Laptops|MAMS] As [TransEncAsp|BERTAsp]:

    python train.py --config config/[restaurants|laptops|mams]_[TransEnc|BERT]_finetune.yml
  • Fine-tune the pre-trained [TransEnc|BERT] on [Restaurants|Laptops|MAMS] As [TransEncAsp+SCAPT|BERTAsp+SCAPT]:

    python train.py --config config/[restaurants|laptops|mams]_[TransEnc|BERT]_finetune.yml --checkpoint PATH/TO/MODEL_CHECKPOINT

Model checkpoints are saved in results.

Evaluation

  • Evaluate [TransEnc|BERT]-based model on [Restaurants|Laptops|MAMS] dataset:

    python evaluate.py --config config/[restaurants|laptops|mams]_[TransEnc|BERT]_finetune.yml --checkpoint PATH/TO/MODEL_CHECKPOINT

Our model parameters:

Model Dataset File Google Drive Link Baidu Wangpan Link Baidu Wangpan Code
TransEncAsp+SCAPT SemEval2014 Restaurant TransEnc_restaurants.zip link link 5e5c
TransEncAsp+SCAPT SemEval2014 Laptop TransEnc_laptops.zip link link 8amq
TransEncAsp+SCAPT MAMS TransEnc_MAMS.zip link link bf2x
BERTAsp+SCAPT SemEval2014 Restaurant BERT_restaurants.zip link link 1w2e
BERTAsp+SCAPT SemEval2014 Laptop BERT_laptops.zip link link zhte
BERTAsp+SCAPT MAMS BERT_MAMS.zip link link 1iva

Citation

If you found this repository useful, please cite our paper:

@inproceedings{li-etal-2021-learning-implicit,
    title = "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training",
    author = "Li, Zhengyan  and
      Zou, Yicheng  and
      Zhang, Chong  and
      Zhang, Qi  and
      Wei, Zhongyu",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.22",
    pages = "246--256",
    abstract = "Aspect-based sentiment analysis aims to identify the sentiment polarity of a specific aspect in product reviews. We notice that about 30{\%} of reviews do not contain obvious opinion words, but still convey clear human-aware sentiment orientation, which is known as implicit sentiment. However, recent neural network-based approaches paid little attention to implicit sentiment entailed in the reviews. To overcome this issue, we adopt Supervised Contrastive Pre-training on large-scale sentiment-annotated corpora retrieved from in-domain language resources. By aligning the representation of implicit sentiment expressions to those with the same sentiment label, the pre-training process leads to better capture of both implicit and explicit sentiment orientation towards aspects in reviews. Experimental results show that our method achieves state-of-the-art performance on SemEval2014 benchmarks, and comprehensive analysis validates its effectiveness on learning implicit sentiment.",
}
Owner
Zhengyan Li
Zhengyan Li
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
Unified tracking framework with a single appearance model

Paper: Do different tracking tasks require different appearance model? [ArXiv] (comming soon) [Project Page] (comming soon) UniTrack is a simple and U

ZhongdaoWang 300 Dec 24, 2022