Chinese Advertisement Board Identification(Pytorch)

Overview

Chinese-Advertisement-Board-Identification(Pytorch)

1.Propose method

The model

  • We first calibrate the direction of the image according to the given coordinates by points transformation algorithm to magnify the font of the characters, which improves the prediction result of the model. Next, we apply pre-trained Yolov5 to predict the box location of the characters, and use sort box location algorithm to sort the order of those located characters. With this, we can not only obviate the problem of string disorder, but also filter out images that contains no characters using Yolov5. Then, we perform two types of classification for each located character box. The first type of classification is to determine whether it is a character. If it is not, we directly label it as "###"; and if it is a character, we perform the second classifiation to recognize the character in the located box.

  • This is our proposed training method for CNN that improves the precision on character recognition by incorporating ArcMargin, FCN, and Focal loss. By using these two types of loss to determine the backend, the classification model can further distinguish the difference between features (The choice of CNN model can be optional to any classification architecture).

Data augmentation

  • Random Mosaic
Input image Mosaic size = 2 Mosaic size = 4 Mosaic size = 6 Mosaic size = 8
  • Random scale Resize
Input image 56x56 to 224x224 38x38 to 224x224 28x28 to 224x224 18x18 to 224x224
  • Random ColorJitter
Input image brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5 brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5

2.Demo

  • Four points transformation
Input image After transformation
  • Predicted results
Input image YoloV5 Text detection Text classification
image image 電機冷氣檢驗
祥準鐘錶時計
薑母鴨
薑母鴨
###
###

3.Competition results

  • Our proposed method combined the training model with ArcMargin and Focal loss

  • The training of the two models, SEResNet101 and EfficientNet, has not ended before the end of the competition. Therefore, the above results which are the 46th epoch could be more accurately

  • Final score = 1_N.E.D - (1 - Precision)

  • Arc Focal loss = ArcMargin + Focal loss(γ=2) 、 Class Focal loss = FCN + Focal loss(γ=1.5)

  • Public dataset scores

Model type Loss function Final score Precision Recall Normalization Edit Distance(N.E.D.)
ResNeXt50 Cross entropy 0.69742 0.9447 0.8884 0.7527
ResNeXt101 Cross entropy 0.71608 0.9631 0.9076 0.7530
SEResNet101 Cross entropy 0.80967 0.9984 0.9027 0.8112
SEResNet101 Focal loss(γ=2) 0.82015 0.9986 0.9032 0.8215
SEResNet101 Arc Focal loss(γ=2)
+ Class Focal loss(γ=1.5)
0.85237 0.9740 0.9807 0.8784
EfficientNet-b5 Arc Focal loss(γ=2)
+ Class Focal loss(γ=1.5)
0.82234 0.9797 0.9252 0.8426
  • Public dataset ensemble scores
Model type Final score Precision Recall Normalization Edit Distance(N.E.D.)
ResNeXt50+ResNeXt101 0.82532 0.9894 0.9046 0.8359
ResNeXt50+ResNeXt101
+SEResNet101
0.86804 0.9737 0.9759 0.8943
ResNeXt50+ResNeXt101
+SEResNet101+EfficientNet-b5
0.87167 0.9740 0.9807 0.8977
  • Private dataset ensemble scores
Model type Final score Precision Recall Normalization Edit Distance(N.E.D.)
ResNeXt50+ResNeXt101
+SEResNet101
0.8682 0.9718 0.9782 0.8964
ResNeXt50+ResNeXt101
+EfficientNet-b5
0.8727 0.9718 0.9782 0.9009
ResNeXt50+ResNeXt101
+SEResNet101+EfficientNet-b5
0.8741 0.9718 0.9782 0.9023

4.Computer equipment

  • System: Windows10、Ubuntu20.04

  • Pytorch version: Pytorch 1.7 or higher

  • Python version: Python 3.6

  • Testing:
    CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz
    RAM: 16GB
    GPU: NVIDIA GeForce RTX 2060 6GB

  • Training:
    CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
    RAM: 256GB
    GPU: NVIDIA GeForce RTX 3090 24GB

5.Download pretrained models

6.Testing

Model evaulation -- Get the predicted results by inputting images

  • First, move your path to the yoloV5
$ cd ./yoloV5
  • Please download the pre-trained model before you run "Text_detection.py" file. Then, put your images under the path ./yoloV5/example/.
  • There are some examples under the folder example. The predicted results will save on the path ./yoloV5/out/ after you run the code. The predicted results are on the back of filename. If no words or the images are not clear enough, the model will predict "###". Otherwise, it will show the predicted results.
  • Note!! You need to verify that the input image is the same as the given image under the folder "example". If the image is not a character image, you could provide the four points coordinate of the image, then deploy the function of image transform, which is in the file "dataset_preprocess.py".
  • Note!! The model of the text classification does not add the model of "EfficientNet-b5". If you would like to use it, you need to revise the code and de-comment by yourself.
$ python3 Text_detection.py

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.75, device='', img_size=480, iou_thres=0.6, save_conf=False, save_txt=False, source='./example', view_img=False, weights='./runs/train/expm/weights/best.pt')
Fusing layers... 
image 1/12 example\img_10000_2.png: 160x480 6 Texts, Done. (0.867s) 法國康達石油
image 2/12 example\img_10000_3.png: 160x480 6 Texts, Done. (0.786s) 電機冷氣檢驗
image 3/12 example\img_10000_5.png: 96x480 7 Texts, Done. (0.998s) 見達汽車修理廠
image 4/12 example\img_10002_5.png: 64x480 12 Texts, Done. (1.589s) 幼兒民族芭蕾成人有氧韻律
image 5/12 example\img_10005_1.png: 480x96 6 Texts, Done. (0.790s) 中山眼視光學
image 6/12 example\img_10005_3.png: 480x352 Done. (0.000s) ###
image 7/12 example\img_10005_6.png: 480x288 Done. (0.000s) ###
image 8/12 example\img_10005_8.png: 480x288 1 Texts, Done. (0.137s) ###
image 9/12 example\img_10013_3.png: 480x96 6 Texts, Done. (0.808s) 祥準鐘錶時計
image 10/12 example\img_10017_1.png: 480x64 7 Texts, Done. (0.917s) 國立臺灣博物館
image 11/12 example\img_10028_5.png: 160x480 3 Texts, Done. (0.399s) 薑母鴨
image 12/12 example\img_10028_6.png: 480x128 3 Texts, Done. (0.411s) 薑母鴨

Image transform

  • Change the main of "dataset_preprocess.py" to execute the function "image_transform()"
def image_transform(path, points):
    img = cv2.imread(path)
    out = four_point_transform(img, points)
    cv2.imwrite(path[:-4] + '_transform.jpg', out)

if __name__ in "__main__":
    # train_valid_get_imageClassification()   # 生成的資料庫辨識是否是文字的 function
    # train_valid_get_imageChar()             # 生成的資料庫辨識該圖像是哪個文字的 function
    # train_valid_detection_get_bbox()         # 生成的資料庫判斷文字位置的 function
    # private_img_get_preprocess()            # 生成預處理的資料庫,之後利用 yolo 抓出char位置,最後放入模型辨識
    # test_bbox()                             # 查看BBOX有沒有抓對
    image_transform('./img_10065.jpg', np.array([ [169,593],[1128,207],[1166,411],[142,723] ])) # 將輸入圖片與要截取的四邊座標轉成正面

6.Training

  • The folder should be put under the fold "./dataset/" first, then unzip the .zip file provided by the official
  • The training data preprocessing can be running after you unzip the file.
$ python3 dataset_preprocess.py

YoloV5 training and evaluation

  • Follow the instructions provided by the Yolov5 official to do the pre-processing of the data, and you can train after you finish.
  • The data pre-processing of Yolov5 has been written in the function "train_valid_detection_get_bbox()", which is in the file dataset_preprocess.py. Therefore, you can get the training data after you run the file dataset_preprocess.py.
  • After that, move you path to ./yoloV5/.
$ cd ./yoloV5
  • After modifying the hyperparameters under the file train.py, you can start training. Please download the [pre-trained models](# 5.Download pretrained models) before training.
$ python3 train.py
  • After training, You need to modify the path of the model to evaluate the performance of the model. And tune the parameters of "conf-thres" and "iou-thres" values according to your own model. We evaluate our model using the private dataset. If you want to use another dataset, please modify the path by yourself.
$ python3 detect.py
  • Finally, please move path to classification.
$ cd ../classification
  • Run the results of the text classification. Please modify the code if you revise any path or filename
$ python3 Ensemble.py

Text or ### classification Training

  • Please move path to classification.
$ cd ./classification
  • The data pre-processing of classification has beeb written in the function "train_valid_get_imageClassification()", which is in the file dataset_preprocess.py. Therefore, you can get the training data after you run the file dataset_preprocess.py.
  • Model training.
$ python3 ClassArcTrainer.py
  • You need to modify the path by yourself to fine-tune the last classifier. use the best model which is in the folder ./modelsArc/ and modify the 111th line of ClassArcTest.py. After that, you can run the code.
$ python3 ClassArcTest.py

Text recognition Training

  • Please move to path classification
$ cd ./classification
  • The data pre-processing of classification has beeb written in the function "train_valid_get_imageChar()", which is in the file dataset_preprocess.py. Therefore, you can get the training data after you run the file dataset_preprocess.py.
  • Train the model we provided.
$ python3 CharArcTrainer2.py
  • Train the model of resnext50 or resnext101.
$ python3 CharTrainer.py
  • **Please run the code of detect.py to extract the word bounding box before evaluation. After that, you should modify the path in Ensemble.py to use the model you trained.

References

[1] https://github.com/ultralytics/yolov5
[2] https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
[3] https://github.com/lukemelas/EfficientNet-PyTorch
[4] https://github.com/ronghuaiyang/arcface-pytorch/blob/master/models/metrics.py
[5] https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
[6] https://tw511.com/a/01/30937.html
[7] Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 4690-4699).
[8] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).
[9] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500).

Owner
Li-Wei Hsiao
Li-Wei Hsiao
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
A TensorFlow implementation of DeepMind's WaveNet paper

A TensorFlow implementation of DeepMind's WaveNet paper This is a TensorFlow implementation of the WaveNet generative neural network architecture for

Igor Babuschkin 5.3k Dec 28, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Temporal Segment Networks (TSN) in PyTorch

TSN-Pytorch We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation for TSN as well as oth

1k Jan 03, 2023
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022