Set of models for classifcation of 3D volumes

Overview

Classification models 3D Zoo - Keras and TF.Keras

This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNets, VGG, etc. It also contains weights obtained by converting ImageNet weights from the same 2D models.

This repository is based on great classification_models repo by @qubvel

Architectures:

Installation

pip install classification-models-3D

Examples

Loading model with imagenet weights:
# for keras
from classification_models_3D.keras import Classifiers

# for tensorflow.keras
# from classification_models_3D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(input_shape=(128, 128, 128, 3), weights='imagenet')

All possible nets for Classifiers.get() method: 'resnet18, 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet101', 'seresnet152', 'seresnext50', 'seresnext101', 'senet154', 'resnext50', 'resnext101', 'vgg16', 'vgg19', 'densenet121', 'densenet169', 'densenet201', 'inceptionresnetv2', 'inceptionv3', 'mobilenet', 'mobilenetv2'

Convert imagenet weights (2D -> 3D)

Code to convert 2D imagenet weights to 3D variant is available here: convert_imagenet_weights_to_3D_models.py. Weights were obtained with TF2, but works OK with Keras + TF1 as well.

How to choose input shape

If initial 2D model had shape (512, 512, 3) then you can use shape (D, H, W, 3) where D * H * W ~= 512*512, so something like (64, 64, 64, 3) will be ok.

Training with single NVIDIA 1080Ti (11 GB) worked with:

  • DenseNet121, DenseNet169 and ResNet50 with shape (96, 128, 128, 3) and batch size 6
  • DenseNet201 with shape (96, 128, 128, 3) and batch size 5
  • ResNet18 with shape (128, 160, 160, 3) and batch size 6

Related repositories

Unresolved problems

  • There is no DepthwiseConv3D layer in keras, so repo used custom layer from this repo by @alexandrosstergiou which can be slower than native implementation.
  • There is no imagenet weights for 'inceptionresnetv2' and 'inceptionv3'.

Description

This code was used to get 1st place in DrivenData: Advance Alzheimer’s Research with Stall Catchers competition.

More details on ArXiv: https://arxiv.org/abs/2104.01687

Citation

If you find this code useful, please cite it as:

@InProceedings{RSolovyev_2021_stalled,
  author = {Solovyev, Roman and Kalinin, Alexandr A. and Gabruseva, Tatiana},
  title = {3D Convolutional Neural Networks for Stalled Brain Capillary Detection},
  booktitle = {Arxiv: 2104.01687},
  month = {April},
  year = {2021}
}
Comments
  • Update __init__.py

    Update __init__.py

    Using keras 2.9.0, import keras_applications as ka gives the following error:- ModuleNotFoundError: No module named 'keras_applications'

    Instead using from keras import applications as ka works!

    opened by msmuskan 0
  • Pushing current version to PyPI

    Pushing current version to PyPI

    Hello @ZFTurbo,

    if you have time, please push the current updated status (with ConvNeXt) of this repo to PyPI. :)

    Thanks again for the great work and your time!

    Cheers, Dominik

    opened by muellerdo 0
  • Grad cam issue

    Grad cam issue

    Hello ,

    base_model, preprocess_input = Classifiers.get('seresnext50') model = base_model(input_shape=(512, 512, 20, 1 ), weights=None , include_top = False ) x = Flatten()(model.output) x = Dense(1024, activation= 'sigmoid')(x) x = Dense(2, activation= 'sigmoid')(x)

    Trying to train a model , the accuracy is everything resides upto expectation, but the gradcam are quite off from the region of the focus - how the accuracy is good but the grad cam is off the focus of targeted area .

    Using the layer - 'activation-161' as output ref - https://github.com/fitushar/3D-Grad-CAM/blob/master/3DGrad-CAM.ipynb for the gradcam generation code , the results are always at the border of the image.

    opened by ntirupathirao18 0
  • ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    Thank you for the great work.

    I am experiencing the following error over and over, even though I created a brand new tensorflow environment and installed all the necessary libraries in it. Could you please have a look on it and guide me how do I solve this problem? Thank you.

    ImportError: Unable to import 'VersionAwareLayers' from 'keras.layers' (/home/ubuntu/anaconda3/envs/cm_3d/lib/python3.7/site-packages/keras/layers/init.py)

    opened by nasir3843 2
  • 3D DenseNet

    3D DenseNet

    Hello and sorry to bother you beforehand,

    I am currently conducting my master thesis project and I am trying to implement a 3D DenseNet-121 with knee MRIs as input data. While I was searching on how to implement a 3D version of the DenseNet I came across your repository and tried to change it for my application.

    I have some issues regarding my try and I didn't know where else to ask about it and again I am sorry if I am completely of topic asking them here.

    Firstly, my input shapes are (250,320,18,1) and when I give them as input to the 3D DenseNet I developed with stride_size=1 for my Conv_block and pooling_size=(2,2,2) and strides=(2,2,1) for my AveragePooling3D layer in the transition block, the model is constructed properly with the specific input_size, while when I am trying to load a DenseNet121 from classification_models_3d.tfkeras classifiers I am unable to construct it with input_shape(250,320,18,1), stride_size=1 and kernel_size=2. It gives as an error "Negative dimension size... for node pool4_pool/AvgPool3D". Is there a way to specifically define the strides for AvgPool3D layer in the transition block?

    And secondly, I was thinking to load the 3D weights to my 3D DenseNet 121, is there a folder in your repository where I can find your pre-trained weights on imagenet??

    Again thank you for having this repository publicly available and sorry if I am completely of topic asking such things here.

    I look forward for you answer, Kind regards, Anastasis

    opened by alexopoulosanastasis 4
  • What are the limitations on Inceptionv3 input shape?

    What are the limitations on Inceptionv3 input shape?

    I seem to always get this error when I try to create InceptionV3 model no matter what input_shape. What are the limitations on input shape there?

    InvalidArgumentError: Negative dimension size caused by subtracting 3 from 2 for '{{node conv3d_314/Conv3D}} = 
    Conv3D[T=DT_FLOAT, data_format="NDHWC", dilations=[1, 1, 1, 1, 1], padding="VALID", strides=[1, 2, 2, 2, 1]](Placeholder, 
    conv3d_314/Conv3D/ReadVariableOp)' with input shapes: [?,2,17,17,192], [3,3,3,192,320].
    
    opened by mazatov 0
Releases(v1.0.4)
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022