FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

Related tags

Deep LearningFCOSR
Overview

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection
arXiv preprint (arXiv:2111.10780).

This implement is modified from mmdetection. We also refer to the codes of ReDet, PIoU, and ProbIoU.

In the process of implementation, we find that only Python code processing will produce huge memory overhead on Nvidia devices. Therefore, we directly write the label assignment module proposed in this paper in the form of CUDA extension of Pytorch. The program could not work effectively when we migrate it to cuda 11 (only support cuda10). By applying CUDA expansion, the memory utilization is improved and a lot of unnecessary calculations are reduced. We also try to train FCOSR-M on 2080ti (4 images per device), which can basically fill memory of graphics card.

Install

Please refer to install.md for installation and dataset preparation.

Getting Started

Please see get_started.md for the basic usage.

Model Zoo

benchmark

The password of baiduPan is ABCD

FCOSR serise DOTA 1.0 result.FPS(2080ti) Detail

Model backbone MS Sched. Param. Input GFLOPs FPS mAP download
FCOSR-S Mobilenet v2 - 3x 7.32M 1024×1024 101.42 23.7 74.05 model/cfg
FCOSR-S Mobilenet v2 3x 7.32M 1024×1024 101.42 23.7 76.11 model/cfg
FCOSR-M ResNext50-32x4 - 3x 31.4M 1024×1024 210.01 14.6 77.15 model/cfg
FCOSR-M ResNext50-32x4 3x 31.4M 1024×1024 210.01 14.6 79.25 model/cfg
FCOSR-L ResNext101-64x4 - 3x 89.64M 1024×1024 445.75 7.9 77.39 model/cfg
FCOSR-L ResNext101-64x4 3x 89.64M 1024×1024 445.75 7.9 78.80 model/cfg

FCOSR serise DOTA 1.5 result. FPS(2080ti) Detail

Model backbone MS Sched. Param. Input GFLOPs FPS mAP download
FCOSR-S Mobilenet v2 - 3x 7.32M 1024×1024 101.42 23.7 66.37 model/cfg
FCOSR-S Mobilenet v2 3x 7.32M 1024×1024 101.42 23.7 73.14 model/cfg
FCOSR-M ResNext50-32x4 - 3x 31.4M 1024×1024 210.01 14.6 68.74 model/cfg
FCOSR-M ResNext50-32x4 3x 31.4M 1024×1024 210.01 14.6 73.79 model/cfg
FCOSR-L ResNext101-64x4 - 3x 89.64M 1024×1024 445.75 7.9 69.96 model/cfg
FCOSR-L ResNext101-64x4 3x 89.64M 1024×1024 445.75 7.9 75.41 model/cfg

FCOSR serise HRSC2016 result. FPS(2080ti)

Model backbone Rot. Sched. Param. Input GFLOPs FPS AP50(07) AP75(07) AP50(12) AP75(12) download
FCOSR-S Mobilenet v2 40k iters 7.29M 800×800 61.57 35.3 90.08 76.75 92.67 75.73 model/cfg
FCOSR-M ResNext50-32x4 40k iters 31.37M 800×800 127.87 26.9 90.15 78.58 94.84 81.38 model/cfg
FCOSR-L ResNext101-64x4 40k iters 89.61M 800×800 271.75 15.1 90.14 77.98 95.74 80.94 model/cfg

Lightweight FCOSR test result on Jetson Xavier NX (DOTA 1.0 single-scale). Detail

Model backbone Head channels Sched. Param Size Input GFLOPs FPS mAP onnx TensorRT
FCOSR-lite Mobilenet v2 256 3x 6.9M 51.63MB 1024×1024 101.25 7.64 74.30 Wait rtr
FCOSR-tiny Mobilenet v2 128 3x 3.52M 23.2MB 1024×1024 35.89 10.68 73.93 Wait rtr
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Weighted K Nearest Neighbors (kNN) algorithm implemented on python from scratch.

kNN_From_Scratch I implemented the k nearest neighbors (kNN) classification algorithm on python. This algorithm is used to predict the classes of new

1 Dec 14, 2021
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Bib-parser - Convenient script to parse .bib files with the ACM Digital Library like metadata

Bib Parser Convenient script to parse .bib files with the ACM Digital Library li

Mehtab Iqbal (Shahan) 1 Jan 26, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021