Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Overview

Framework overview

This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized in machine learning by Echo State Networks) for classification or clustering of univariate/multivariate time series.

Several options are available to customize the RC model, by selecting different configurations for each module.

  1. The reservoir module specifies the reservoir configuration (e.g., bidirectional, leaky neurons, circle topology);
  2. The dimensionality reduction module (optionally) applies a dimensionality reduction on the produced sequence of the reservoir's states;
  3. The representation module defines how to represent the input time series from the sequence of reservoir's states;
  4. The readout module specifies the model to use to perform the final classification.

The representations obtained at step 3 can also be used to perform clustering.

This library also implements the novel reservoir model space as representation for the time series. Details on the methodology can be found in the original paper (Arix version here).

Required libraries

  • sklearn (tested on version 0.22.1)
  • scipy

The code has been tested on Python 3.7, but lower versions should work as well.

Quick execution

Run the script classification_example.py or clustering_example.py to perform a quick execution on a benchmark dataset of multivariate time series.

For the clustering example, check also the notebook here.

Configure the RC-model

The main class RC_model contained in modules.py permits to specify, train and test an RC-model. The RC-model is configured by passing to the constructor of the class RC_model a set of parameters. To get an idea, you can check classification_example.py or clustering_example.py where the parameters are specified through a dictionary (config).

The available configuration hyperparameters are listed in the following and, for the sake of clarity, are grouped according to which module of the architecture they refer to.

1. Reservoir:

  • n_drop - number of transient states to drop
  • bidir - use a bidirectional reservoir (True or False)
  • reservoir - precomputed reservoir (object of class Reservoir in reservoir.py; if None, the following hyperparameters must be specified:
    • n_internal_units = number of processing units in the reservoir
    • spectral_radius = largest eigenvalue of the reservoir matrix of connection weights (to guarantee the Echo State Property, set spectral_radius <= leak <= 1)
    • leak = amount of leakage in the reservoir state update (optional, None or 1.0 --> no leakage)
    • circ = if True, generate a determinisitc reservoir with circle topology where each connection has the same weight
    • connectivity = percentage of nonzero connection weights (ignored if circ = True)
    • input_scaling = scaling of the input connection weights (note that weights are randomly drawn from {-1,1})
    • noise_level = deviation of the Gaussian noise injected in the state update

2. Dimensionality reduction:

  • dimred_method - procedure for reducing the number of features in the sequence of reservoir states; possible options are: None (no dimensionality reduction), 'pca' (standard PCA) or 'tenpca' (tensorial PCA for multivariate time series data)
  • n_dim - number of resulting dimensions after the dimensionality reduction procedure

3. Representation:

  • mts_rep - type of multivariate time series representation. It can be 'last' (last state), 'mean' (mean of all states), 'output' (output model space), or 'reservoir' (reservoir model space)
  • w_ridge_embedding - regularization parameter of the ridge regression in the output model space and reservoir model space representation; ignored if mts_rep is None

4. Readout:

  • readout_type - type of readout used for classification. It can be 'lin' (ridge regression), 'mlp' (multilayer perceptron), 'svm' (support vector machine), or None. If None, the input representations will be stored in the .input_repr attribute: this is useful for clustering and visualization. Also, if None, the other Readout hyperparameters can be left unspecified.
  • w_ridge - regularization parameter of the ridge regression readout (only when readout_type is 'lin')
  • mlp_layout - list with the sizes of MLP layers, e.g. [20,20,10] defines a MLP with 3 layers of 20, 20 and 10 units respectively (only when readout_type is 'mlp')
  • batch_size - size of the mini batches used during training (only when readout_type is 'mlp')
  • num_epochs - number of iterations during the optimization (only when readout_type is 'mlp')
  • w_l2 = weight of the L2 regularization (only when readout_type is 'mlp')
  • learning_rate = learning rate in the gradient descent optimization (only when readout_type is 'mlp')
  • nonlinearity = type of activation function; it can be {'relu', 'tanh', 'logistic', 'identity'} (only when readout_type is 'mlp')
  • svm_gamma = bandwith of the RBF kernel (only when readout_type is 'svm')
  • svm_C = regularization for the SVM hyperplane (only when readout_type is 'svm')

Train and test the RC-model for classification

The training and test function requires in input training and test data, which must be provided as multidimensional NumPy arrays of shape [N,T,V], with:

  • N = number of samples
  • T = number of time steps in each sample
  • V = number of variables in each sample

Training and test labels (Y and Yte) must be provided in one-hot encoding format, i.e. a matrix [N,C], where C is the number of classes.

Training

RC_model.train(X, Y)

Inputs:

  • X, Y: training data and respective labels

Outputs:

  • tr_time: time (in seconds) used to train the classifier

Test

RC_module.test(Xte, Yte)

Inputs:

  • Xte, Yte: test data and respective labels

Outputs:

  • accuracy, F1 score: metrics achieved on the test data

Train the RC-model for clustering

As in the case of classification, the data must be provided as multidimensional NumPy arrays of shape [N,T,V]

Training

RC_model.train(X)

Inputs:

  • X: time series data

Outputs:

  • tr_time: time (in seconds) used to generate the representations

Additionally, the representations of the input data X are stored in the attribute RC_model.input_repr

Time series datasets

A collection of univariate and multivariate time series dataset is available for download here. The dataset are provided both in MATLAB and Python (Numpy) format. Original raw data come from UCI, UEA, and UCR public repositories.

Citation

Please, consider citing the original paper if you are using this library in your reasearch

@article{bianchi2020reservoir,
  title={Reservoir computing approaches for representation and classification of multivariate time series},
  author={Bianchi, Filippo Maria and Scardapane, Simone and L{\o}kse, Sigurd and Jenssen, Robert},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2020},
  publisher={IEEE}
}

Tensorflow version

In the latest version of the repository there is no longer a dependency from Tensorflow, reducing the dependecies of this repository only to scipy and scikit-learn. The MLP readout is now based on the scikit-learn implementation that, however, does not support dropout and the two custom activation functions, Maxout and Kafnets. These functionalities are still available in the branch "Tensorflow". Checkout it to use the Tensorflow version of this repository.

License

The code is released under the MIT License. See the attached LICENSE file.

Owner
Filippo Bianchi
Filippo Bianchi
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Scripts and a shader to get you started on setting up an exported Koikatsu character in Blender.

KK Blender Shader Pack A plugin and a shader to get you started with setting up an exported Koikatsu character in Blender. The plugin is a Blender add

166 Jan 01, 2023
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022