Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Overview

Framework overview

This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized in machine learning by Echo State Networks) for classification or clustering of univariate/multivariate time series.

Several options are available to customize the RC model, by selecting different configurations for each module.

  1. The reservoir module specifies the reservoir configuration (e.g., bidirectional, leaky neurons, circle topology);
  2. The dimensionality reduction module (optionally) applies a dimensionality reduction on the produced sequence of the reservoir's states;
  3. The representation module defines how to represent the input time series from the sequence of reservoir's states;
  4. The readout module specifies the model to use to perform the final classification.

The representations obtained at step 3 can also be used to perform clustering.

This library also implements the novel reservoir model space as representation for the time series. Details on the methodology can be found in the original paper (Arix version here).

Required libraries

  • sklearn (tested on version 0.22.1)
  • scipy

The code has been tested on Python 3.7, but lower versions should work as well.

Quick execution

Run the script classification_example.py or clustering_example.py to perform a quick execution on a benchmark dataset of multivariate time series.

For the clustering example, check also the notebook here.

Configure the RC-model

The main class RC_model contained in modules.py permits to specify, train and test an RC-model. The RC-model is configured by passing to the constructor of the class RC_model a set of parameters. To get an idea, you can check classification_example.py or clustering_example.py where the parameters are specified through a dictionary (config).

The available configuration hyperparameters are listed in the following and, for the sake of clarity, are grouped according to which module of the architecture they refer to.

1. Reservoir:

  • n_drop - number of transient states to drop
  • bidir - use a bidirectional reservoir (True or False)
  • reservoir - precomputed reservoir (object of class Reservoir in reservoir.py; if None, the following hyperparameters must be specified:
    • n_internal_units = number of processing units in the reservoir
    • spectral_radius = largest eigenvalue of the reservoir matrix of connection weights (to guarantee the Echo State Property, set spectral_radius <= leak <= 1)
    • leak = amount of leakage in the reservoir state update (optional, None or 1.0 --> no leakage)
    • circ = if True, generate a determinisitc reservoir with circle topology where each connection has the same weight
    • connectivity = percentage of nonzero connection weights (ignored if circ = True)
    • input_scaling = scaling of the input connection weights (note that weights are randomly drawn from {-1,1})
    • noise_level = deviation of the Gaussian noise injected in the state update

2. Dimensionality reduction:

  • dimred_method - procedure for reducing the number of features in the sequence of reservoir states; possible options are: None (no dimensionality reduction), 'pca' (standard PCA) or 'tenpca' (tensorial PCA for multivariate time series data)
  • n_dim - number of resulting dimensions after the dimensionality reduction procedure

3. Representation:

  • mts_rep - type of multivariate time series representation. It can be 'last' (last state), 'mean' (mean of all states), 'output' (output model space), or 'reservoir' (reservoir model space)
  • w_ridge_embedding - regularization parameter of the ridge regression in the output model space and reservoir model space representation; ignored if mts_rep is None

4. Readout:

  • readout_type - type of readout used for classification. It can be 'lin' (ridge regression), 'mlp' (multilayer perceptron), 'svm' (support vector machine), or None. If None, the input representations will be stored in the .input_repr attribute: this is useful for clustering and visualization. Also, if None, the other Readout hyperparameters can be left unspecified.
  • w_ridge - regularization parameter of the ridge regression readout (only when readout_type is 'lin')
  • mlp_layout - list with the sizes of MLP layers, e.g. [20,20,10] defines a MLP with 3 layers of 20, 20 and 10 units respectively (only when readout_type is 'mlp')
  • batch_size - size of the mini batches used during training (only when readout_type is 'mlp')
  • num_epochs - number of iterations during the optimization (only when readout_type is 'mlp')
  • w_l2 = weight of the L2 regularization (only when readout_type is 'mlp')
  • learning_rate = learning rate in the gradient descent optimization (only when readout_type is 'mlp')
  • nonlinearity = type of activation function; it can be {'relu', 'tanh', 'logistic', 'identity'} (only when readout_type is 'mlp')
  • svm_gamma = bandwith of the RBF kernel (only when readout_type is 'svm')
  • svm_C = regularization for the SVM hyperplane (only when readout_type is 'svm')

Train and test the RC-model for classification

The training and test function requires in input training and test data, which must be provided as multidimensional NumPy arrays of shape [N,T,V], with:

  • N = number of samples
  • T = number of time steps in each sample
  • V = number of variables in each sample

Training and test labels (Y and Yte) must be provided in one-hot encoding format, i.e. a matrix [N,C], where C is the number of classes.

Training

RC_model.train(X, Y)

Inputs:

  • X, Y: training data and respective labels

Outputs:

  • tr_time: time (in seconds) used to train the classifier

Test

RC_module.test(Xte, Yte)

Inputs:

  • Xte, Yte: test data and respective labels

Outputs:

  • accuracy, F1 score: metrics achieved on the test data

Train the RC-model for clustering

As in the case of classification, the data must be provided as multidimensional NumPy arrays of shape [N,T,V]

Training

RC_model.train(X)

Inputs:

  • X: time series data

Outputs:

  • tr_time: time (in seconds) used to generate the representations

Additionally, the representations of the input data X are stored in the attribute RC_model.input_repr

Time series datasets

A collection of univariate and multivariate time series dataset is available for download here. The dataset are provided both in MATLAB and Python (Numpy) format. Original raw data come from UCI, UEA, and UCR public repositories.

Citation

Please, consider citing the original paper if you are using this library in your reasearch

@article{bianchi2020reservoir,
  title={Reservoir computing approaches for representation and classification of multivariate time series},
  author={Bianchi, Filippo Maria and Scardapane, Simone and L{\o}kse, Sigurd and Jenssen, Robert},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2020},
  publisher={IEEE}
}

Tensorflow version

In the latest version of the repository there is no longer a dependency from Tensorflow, reducing the dependecies of this repository only to scipy and scikit-learn. The MLP readout is now based on the scikit-learn implementation that, however, does not support dropout and the two custom activation functions, Maxout and Kafnets. These functionalities are still available in the branch "Tensorflow". Checkout it to use the Tensorflow version of this repository.

License

The code is released under the MIT License. See the attached LICENSE file.

Owner
Filippo Bianchi
Filippo Bianchi
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023