Have you ever wondered how cool it would be to have your own A.I

Overview

python-with-AI

create import pyttsx3 #pip install pyttsx3 import speech_recognition as sr #pip intall speech recongnition import datetime import wikipedia #pip install wikipedia import webbrowser import os import smtplib

engine = pyttsx3.init('sapi5') voices = engine.getProperty('voices')

print(voices[1].id)

engine.setProperty('voice', voices[0].id)

def speak(audio): engine.say(audio) engine.runAndWait()

def wishMe(): hour = int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak("Good Morning!")

elif hour>=12 and hour<18:
    speak("Good Afternoon!")   

else:
    speak("Good Evening!")  

speak("I am Jarvis Sir. Please tell me how may I help you")       

def takeCommand(): #It takes microphone input from the user and returns string output

r = sr.Recognizer()
with sr.Microphone() as source:
    print("Listening...")
    r.pause_threshold = 1
    audio = r.listen(source)

try:
    print("Recognizing...")    
    query = r.recognize_google(audio, language='en-in')
    print(f"User said: {query}\n")

except Exception as e:
    # print(e)    
    print("Say that again please...")  
    return "None"
return query

def sendEmail(to, content): server = smtplib.SMTP('smtp.gmail.com', 587) server.ehlo() server.starttls() server.login('[email protected]', 'your-password') server.sendmail('[email protected]', to, content) server.close()

if name == "main": wishMe() while True: # if 1: query = takeCommand().lower()

    # Logic for executing tasks based on query
    if 'wikipedia' in query:
        speak('Searching Wikipedia...')
        query = query.replace("wikipedia", "")
        results = wikipedia.summary(query, sentences=2)
        speak("According to Wikipedia")
        print(results)
        speak(results)

    elif 'open youtube' in query:
        webbrowser.open("youtube.com")

    elif 'open google' in query:
        webbrowser.open("google.com")

    elif 'open stackoverflow' in query:
        webbrowser.open("stackoverflow.com")   


    elif 'play music' in query:
        music_dir = 'D:\\Non Critical\\songs\\Favorite Songs2'
        songs = os.listdir(music_dir)
        print(songs)    
        os.startfile(os.path.join(music_dir, songs[0]))

    elif 'the time' in query:
        strTime = datetime.datetime.now().strftime("%H:%M:%S")    
        speak(f"Sir, the time is {strTime}")

    elif 'open code' in query:
        codePath = "C:\\Users\\harsh\\AppData\\Local\\Programs\\Microsoft VS Code\\Code.exe"
        os.startfile(codePath)

    elif 'email to harry' in query:
        try:
            speak("What should I say?")
            content = takeCommand()
            to = "[email protected]"    
            sendEmail(to, content)
            speak("Email has been sent!")
        except Exception as e:
            print(e)
            speak("Sorry my friend harsh bhai. I am not able to send this email")    
Owner
Harsh Gupta
Harsh Gupta
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model

onnx-facial-lmk-detector End-to-end face detection, cropping, norm estimation, and landmark detection in a single onnx model, model.onnx. Demo You can

atksh 42 Dec 30, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022