Scenarios, tutorials and demos for Autonomous Driving

Overview

The Autonomous Driving Cookbook (Preview)


NOTE:

This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is currently a work in progress. We will continue to add more tutorials and scenarios based on requests from our users and the availability of our collaborators.


Autonomous driving has transcended far beyond being a crazy moonshot idea over the last half decade or so. It has quickly become one of the biggest technologies today that promises to shape our tomorrow, not very unlike when cars first came into existence. A big driver powering this change is the recent advances in software (Artificial Intelligence), hardware (GPUs, FPGAs etc.) and cloud computing, which have enabled ingest and processing of large amounts of data, making it possible for companies to push for levels 4 and 5 of autonomy. Achieving those levels of autonomy though, require training on hundreds of millions and sometimes hundreds of billions of miles worth of training data to demonstrate reliability, according to a report from RAND.

Despite the large amount of data collected every day, it is still insufficient to meet the demands of the ever increasing AI model complexity required by autonomous vehicles. One way to collect such huge amounts of data is through the use of simulation. Simulation makes it easy to not only collect data from a variety of different scenarios which would take days, if not months in the real world (like different weather conditions, varying daylight etc.), it also provides a safe test bed for trained models. With behavioral cloning, you can easily prepare highly efficient models in simulation and fine tune them using a relatively low amount of real world data. Then there are models built using techniques like Reinforcement Learning, which can only be trained in simulation. With simulators such as AirSim, working on these scenarios has become very easy.

We believe that the best way to make a technology grow is by making it easily available and accessible to everyone. This is best achieved by making the barrier of entry to it as low as possible. At Microsoft, our mission is to empower every person and organization on the planet to achieve more. That has been our primary motivation behind preparing this cookbook. Our aim with this project is to help you get quickly acquainted and familiarized with different onboarding scenarios in autonomous driving so you can take what you learn here and employ it in your everyday job with a minimal barrier to entry.

Who is this cookbook for?

Our plan is to make this cookbook a valuable resource for beginners, researchers and industry experts alike. Tutorials in the cookbook are presented as Jupyter notebooks, making it very easy for you to download the instructions and get started without a lot of setup time. To help this further, wherever needed, tutorials come with their own datasets, helper scripts and binaries. While the tutorials leverage popular open-source tools (like Keras, TensorFlow etc.) as well as Microsoft open-source and commercial technology (like AirSim, Azure virtual machines, Batch AI, CNTK etc.), the primary focus is on the content and learning, enabling you to take what you learn here and apply it to your work using tools of your choice.

We would love to hear your feedback on how we can evolve this project to reach that goal. Please use the GitHub Issues section to get in touch with us regarding ideas and suggestions.

Tutorials available

Currently, the following tutorials are available:

Following tutorials will be available soon:

  • Lane Detection using Deep Learning

Contributing

Please read the instructions and guidelines for collaborators if you wish to add a new tutorial to the cookbook.

This project welcomes and encourages contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
Scalable, event-driven, deep-learning-friendly backtesting library

...Minimizing the mean square error on future experience. - Richard S. Sutton BTGym Scalable event-driven RL-friendly backtesting library. Build on

Andrew 922 Dec 27, 2022
Fast Neural Style for Image Style Transform by Pytorch

FastNeuralStyle by Pytorch Fast Neural Style for Image Style Transform by Pytorch This is famous Fast Neural Style of Paper Perceptual Losses for Real

Bengxy 81 Sep 03, 2022