Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Overview

Blacksmith Rowhammer Fuzzer

Academic Code Language Badge License: MIT contributions welcome

Preprint: arXiv Paper Funding

This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is to appear in the IEEE conference Security & Privacy (S&P) 2022.

This is the implementation of our Blacksmith Rowhammer fuzzer. This fuzzer crafts novel non-uniform Rowhammer access patterns based on the concepts of frequency, phase, and amplitude. Our evaluation on 40 DIMMs showed that it is able to bypass recent Target Row Refresh (TRR) in-DRAM mitigations effectively and as such can could trigger bit flips on all 40 tested DIMMs.

Getting Started

Following, we quickly describe how to build and run Blacksmith.

Prerequisites

Blacksmith has been tested on Ubuntu 18.04 LTS with Linux kernel 4.15.0. As the CMakeLists we ship with Blacksmith downloads all required dependencies at compile time, there is no need to install any package other than g++ (>= 8) and cmake (>= 3.14).

To facilitate the development, we also provide a Docker container (see Dockerfile) where all required tools and libraries are installed. This container can be configured, for example, as remote host in the CLion IDE, which automatically transfers the files via SSH to the Docker container (i.e., no manual mapping required).

Building Blacksmith

You can build Blacksmith with its supplied CMakeLists.txt in a new build directory:

mkdir build \ 
  && cd build \
  && cmake .. \
  && make -j$(nproc)

Now we can run Blacksmith. For example, we can run Blacksmith in fuzzing mode by passing a random DIMM ID (e.g., --dimm-id 1; only used internally for logging into stdout.log), we limit the fuzzing to 6 hours (--runtime-limit 21600), pass the number of ranks of our current DIMM (--ranks 1) to select the proper bank/rank functions, and tell Blacksmith to do a sweep with the best found pattern after fuzzing finished (--sweeping):

sudo ./blacksmith --dimm-id 1 --runtime-limit 21600 --ranks 1 --sweeping  

While Blacksmith is running, you can use tail -f stdout.log to keep track of the current progress (e.g., patterns, found bit flips). You will see a line like

[!] Flip 0x2030486dcc, row 3090, page offset: 3532, from 8f to 8b, detected after 0 hours 6 minutes 6 seconds.

in case that a bit flip was found. After finishing the Blacksmith run, you can find a fuzz-summary.json that contains the information found in the stdout.log in a machine-processable format. In case you passed the --sweeping flag, you can additionally find a sweep-summary-*.json file that contains the information of the sweeping pass.

Supported Parameters

Blacksmith supports the command-line arguments listed in the following. Except for the parameters --dimm-id and --ranks all other parameters are optional.

    -h, --help
        shows this help message

==== Mandatory Parameters ==================================

    -d, --dimm-id
        internal identifier of the currently inserted DIMM (default: 0)
    -r, --ranks
        number of ranks on the DIMM, used to determine bank/rank/row functions, assumes Intel Coffe Lake CPU (default: None)
    
==== Execution Modes ==============================================

    -f, --fuzzing
        perform a fuzzing run (default program mode)        
    -g, --generate-patterns
        generates N patterns, but does not perform hammering; used by ARM port
    -y, --replay-patterns <csv-list>
        replays patterns given as comma-separated list of pattern IDs

==== Replaying-Specific Configuration =============================

    -j, --load-json
        loads the specified JSON file generated in a previous fuzzer run, required for --replay-patterns
        
==== Fuzzing-Specific Configuration =============================

    -s, --sync
        synchronize with REFRESH while hammering (default: 1)
    -w, --sweeping
        sweep the best pattern over a contig. memory area after fuzzing (default: 0)
    -t, --runtime-limit
        number of seconds to run the fuzzer before sweeping/terminating (default: 120)
    -a, --acts-per-ref
        number of activations in a tREF interval, i.e., 7.8us (default: None)
    -p, --probes
        number of different DRAM locations to try each pattern on (default: NUM_BANKS/4)

The default values of the parameters can be found in the struct ProgramArguments.

Configuration parameters of Blacksmith that we did not need to modify frequently, and thus are not runtime parameters, can be found in the GlobalDefines.hpp file.

Citing our Work

To cite Blacksmith in academic papers, please use the following BibTeX entry:

@inproceedings{jattke2021blacksmith,
  title = {{{BLACKSMITH}}: Rowhammering in the {{Frequency Domain}}},
  shorttitle = {Blacksmith},
  booktitle = {{{IEEE S}}\&{{P}} '22},
  author = {Jattke, Patrick and {van der Veen}, Victor and Frigo, Pietro and Gunter, Stijn and Razavi, Kaveh},
  year = {2021},
  month = nov,
  note = {\url{https://comsec.ethz.ch/wp-content/files/blacksmith_sp22.pdf}}
}
Comments
  • mmap: Invalid argument

    mmap: Invalid argument

    after installing blacksmith successfully and setting up the hugepage to 1 GB I tested the following : sudo ./blacksmith --dimm-id 1 --runtime-limit 120 --ranks 1 and i get this error message: mmap: Invalid argument how can I check if my --dimm-id is valid or not? I think its the argument that creates this issue! my OS : Linux ubuntu 5.11.0-27-generic 64-bit

    opened by AnaMazda 6
  • Blacksmith terminated: Illegal instruction

    Blacksmith terminated: Illegal instruction

    After setting the hugepage size to 1G and build the blacksmith successfully, the program ends with the output "Illegal Instructions" and there is no content in the stdout.log

    opened by HxJi 5
  • Blacksmith not running: mmap: Cannot allocate memory

    Blacksmith not running: mmap: Cannot allocate memory

    Hello,

    I wanted to try your fuzzer on various computers but I always end up with the mmap: Cannot allocate memory error. I thought this would come from my configuration so I tried to increase the number of available huge pages.

    I currently have the following memory configuration regarding huge pages:

    ▶ cat /proc/meminfo|grep Huge                         
    AnonHugePages:         0 kB
    ShmemHugePages:        0 kB
    FileHugePages:         0 kB
    HugePages_Total:     535
    HugePages_Free:      535
    HugePages_Rsvd:        0
    HugePages_Surp:        0
    Hugepagesize:       2048 kB
    Hugetlb:         1095680 kB
    

    On other devices I could even reach more than 1000 free huge pages, which I believe is enough for allocating 1GB of memory with huge pages. However the issue seems to come from somewhere else. I tried the execution on two different devices with ArchLinux, Debian 11 and Ubuntu 18.04 LTS with no success.

    Am I missing something ?

    opened by T-TROUCHKINE 5
  • Does this work on WSL2?

    Does this work on WSL2?

    Hi. I got it working on my gen3 I7 build, but I was wondering if this works on WSL2?

    [email protected]:~/blacksmith-public/build$ sudo ./blacksmith --dimm-id 2 --runtime-limit 21600 --ranks 1 --sweeping Writing into logfile stdout.log [email protected]:~/blacksmith-public/build$ sudo ./blacksmith --dimm-id 1 --runtime-limit 21600 --ranks 1 --sweeping

    [+] General information about this fuzzing run: Start timestamp:: 1637689072 Hostname: PSTEJSKA03-PC Commit SHA: NO_REPOSITORY Run time limit: 21600 (6 hours 0 minutes 0 seconds) [+] Printing run configuration (GlobalDefines.hpp): DRAMA_ROUNDS: 1000 CACHELINE_SIZE: 64 HAMMER_ROUNDS: 1000000 THRESH: 495 NUM_TARGETS: 10 MAX_ROWS: 30 NUM_BANKS: 16 DIMM: 1 CHANNEL: 1 MEM_SIZE: 1073741824 PAGE_SIZE: 4096

    [+] Initializing memory with pseudorandom sequence. [-] Could not find conflicting address sets. Is the number of banks (16) defined correctly?

    opened by MrObvious 4
  • blacksmith doesnt work :  /mnt/huge/buff not found

    blacksmith doesnt work : /mnt/huge/buff not found

    after running blacksmith with default param as mentioned in the description, it stopped immediately with the following erreur in the logfile :

    ` [+] General information about this fuzzing run: Start timestamp:: 1637072011 Hostname: 1cc27a1cdb50 Commit SHA: c8e65b709a83665f9528efdedcf064abdb04859f Run time limit: 120 (0 hours 2 minutes 0 seconds) [+] Printing run configuration (GlobalDefines.hpp): DRAMA_ROUNDS: 1000 CACHELINE_SIZE: 64 HAMMER_ROUNDS: 1000000 THRESH: 495 NUM_TARGETS: 10 MAX_ROWS: 30 NUM_BANKS: 16 DIMM: 1 CHANNEL: 1 MEM_SIZE: 1073741824 PAGE_SIZE: 4096

    [-] Instruction setpriority failed. [+] Could not mount superpage from /mnt/huge/buff. Error: `

    opened by AnaMazda 3
  • Blacksmith run hangs and log shows strange characters

    Blacksmith run hangs and log shows strange characters

    Hi

    I installed blacksmith on a i3-8350k (Coffee-Lake-S) System. Unfortunately the test hangs after a while and the stdout.log shows some strange characters. Does anyone have an idea what could be the reason of this?

    BR JKR stdout_2022_02_04_hangs.log

    opened by JKRde 2
  • Could not find conflicting address sets

    Could not find conflicting address sets

    I'm not able to get past this error even when recompiling with different NUM_BANKS value - I tried 4, 8, 16 and even 32. Always the same output. I'm not sure what other parameters to adjust as the error message doesn't suggest anything else.

    My output is:

    [+] General information about this fuzzing run:
    Start timestamp:: 1637333603
    Hostname: ubuntu
    Commit SHA: c8e65b709a83665f9528efdedcf064abdb04859f
    Run time limit: 21600 (6 hours 0 minutes 0 seconds)
    [+] Printing run configuration (GlobalDefines.hpp):
    DRAMA_ROUNDS: 1000
    CACHELINE_SIZE: 64
    HAMMER_ROUNDS: 1000000
    THRESH: 495
    NUM_TARGETS: 10
    MAX_ROWS: 30
    NUM_BANKS: 32
    DIMM: 1
    CHANNEL: 1
    MEM_SIZE: 1073741824
    PAGE_SIZE: 4096
    
    [+] Initializing memory with pseudorandom sequence.
    [-] Could not find conflicting address sets. Is the number of banks (32) defined correctly?
    

    My kernel is 5.13.0-19-generic on ubuntu 21.10

    Any help is appreciated.

    opened by DominikBucko 2
  • Unable to compile on ARM processor

    Unable to compile on ARM processor

    BlackSmith 0.0.2 has no support for ARM processors:

    [81%] Building CXX object CMakeFiles/bs.dir/src/Fuzzer/AggressorAccessPattern.cpp.o In file included from /home/parallels/blacksmith/include/Memory/DramAnalyzer.hpp:13, from /home/parallels/blacksmith/include/Memory/Memory.hpp:13, from /home/parallels/blacksmith/include/Forges/TraditionalHammerer.hpp:9, from /home/parallels/blacksmith/src/Forges/TraditionalHammerer.cpp:1: /home/parallels/blacksmith/include/Utilities/AsmPrimitives.hpp: In static member function ‘static void TraditionalHammerer::hammer_sync(std::vector<volatile char*>&, int, volatile char*, volatile char*)’: /home/parallels/blacksmith/include/Utilities/AsmPrimitives.hpp:56:3: error: unknown register name ‘%rcx’ in ‘asm’ 56 | asm volatile("rdtscp\n" | ^~~ /home/parallels/blacksmith/include/Utilities/AsmPrimitives.hpp:56:3: error: unknown register name ‘%rcx’ in ‘asm’ 56 | asm volatile("rdtscp\n" | ^~~ /home/parallels/blacksmith/include/Utilities/AsmPrimitives.hpp:56:3: error: unknown register name ‘%rcx’ in ‘asm’ 56 | asm volatile("rdtscp\n" | ^~~ /home/parallels/blacksmith/include/Utilities/AsmPrimitives.hpp:56:3: error: unknown register name ‘%rcx’ in ‘asm’ 56 | asm volatile("rdtscp\n" | ^~~ make[2]: *** [CMakeFiles/bs.dir/build.make:104: CMakeFiles/bs.dir/src/Forges/TraditionalHammerer.cpp.o] Error 1 make[2]: *** Waiting for unfinished jobs.... make[1]: *** [CMakeFiles/Makefile2:387: CMakeFiles/bs.dir/all] Error 2 make: *** [Makefile:136: all] Error 2

    opened by UkeraGan 1
  • fix THRESH comment

    fix THRESH comment

    In my opinion, THRESH is the threshold to distinguish row buffer miss rather than cache miss since in function measure_time() each memory access is followed by a clflushopt to flush it from cache.

    opened by Emoth97 0
  • Fuzzer unable to find patterns on some DIMMs

    Fuzzer unable to find patterns on some DIMMs

    Hi @pjattke ,

    I've used the Blacksmith fuzzer to find patterns that produce a large number of bit flips on some DIMMs. However, on other DIMMs from the same manufacturer and having similar geometry (same number of ranks and banks), I have not managed to produce even a single bit flip even after repeated invocations of the fuzzer (I've roughly run the fuzzer 6 different times, each fuzzing for a duration of 6 hours). I assume it is unlikely for these DIMMs to be completely robust to the Rowhammer exploit and exploring the search space further should produce bit flips? Did you also come across something similar in your experiments? Do you have any practical advice (perhaps alter the THRESH value defined in GlobalDefines.hpp or run the fuzzer on a particular CPU) so I can produce bit flips on these DIMMs too?

    Let me know if you would require further information and thanks again for your time! cc @kaustav-goswami and @dxaen

    opened by hariv 1
  • Some questions regarding the use of time-based side channels in blacksmith

    Some questions regarding the use of time-based side channels in blacksmith

    Hi @pjattke, I have some questions regarding the use of some time-based side channels in the blacksmith code.

    • If I understood correctly, the find_bank_conflicts() method of DramAnalyzer is using a timing side-channel to find addresses that map to each DRAM bank. However, since blacksmith also uses DRAMA to figure out the DRAM functions to map physical addresses to the DRAM geometry (channel, rank, bank, row, etc) what is the need for this side channel?

    • find_bank_conflicts() checks if the time that is taken to access 2 addresses is above a threshold to determine if the 2 addresses belong to the same bank. How did you determine this threshold? My understanding is that the code is looking for Row buffer misses when accessing the 2 addresses (which would take longer implying that they belong to the same bank), but how did you set a value to the threshold? Is the threshold dependent on each individual DIMM or does it depend on the microarchitecture? Also, why is it that the same pair of addresses is checked twice? Is this done to account for jitter?

    • Lastly, the hammer_sync() method of TraditionalHammerer uses a timing side-channel to detect the start of a refresh interval to synchronize hammering within the interval. The timing side-channel uses 2 addresses in the same bank in order to do the sync. Is there any reason as to why the method uses 2 addresses? Can detecting the start of a refresh be detected just by accessing a single address?

    Thanks for your time and wish you a happy new year. cc @kaustav-goswami and @dxaen.

    opened by hariv 3
  • Packaging of Blacksmith in Guix.

    Packaging of Blacksmith in Guix.

    @jgarte and I, with the help of other volunteers, are packaging Blacksmith in Guix. Once completed, Blacksmith can be deployed on any GNU+Linux distribution, with or without Guix, in a reproducible way.

    I am opening this thread so that we can update our progress, including any issues.

    opened by ghost 3
  • Blacksmith on non-Coffee Lake CPUs

    Blacksmith on non-Coffee Lake CPUs

    Did anyone try running blacksmith on CPUs other than Coffee Lake?

    I was able to run it successfully on Kaby Lake, but it didn't work on Comet Lake. It errors out immediately saying it could not find conflicting address sets and asks if the number of banks has been defined correctly (which I checked is correct).

    opened by hariv 14
Releases(0.0.2)
Owner
Computer Security Group @ ETH Zurich
Computer Security Group @ ETH Zurich
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Improving 3D Object Detection with Channel-wise Transformer

"Improving 3D Object Detection with Channel-wise Transformer" Thanks for the OpenPCDet, this implementation of the CT3D is mainly based on the pcdet v

Hualian Sheng 107 Dec 20, 2022
[CVPR 2021] Exemplar-Based Open-Set Panoptic Segmentation Network (EOPSN)

EOPSN: Exemplar-Based Open-Set Panoptic Segmentation Network (CVPR 2021) PyTorch implementation for EOPSN. We propose open-set panoptic segmentation t

Jaedong Hwang 49 Dec 30, 2022