Codebase for the paper titled "Continual learning with local module selection"

Related tags

Deep LearningLMC
Overview

This repository contains the codebase for the paper Continual Learning via Local Module Composition.


Setting up the environemnt

Create a new conda environment and install the requirements.

conda create --name ENV python=3.7
conda activate ENV
pip install -r requirements.txt
pip install -e Utils/ctrl/
pip install Utils/nngeometry/

CTrL Benchmark

All experiments were run on Nvidia Quadro RTX 8000 GPUs. To run CTrL experiments use the following comands for different streams:

Stream S-

LMC (task agnostic)

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_minus --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.6863, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_minus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3

(test acc. 0.667, 12 modules)

Stream S+

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --pr_name lmc_cr --epochs=100 --epochs_str_only_after_addition=1 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_plus --temp=1 --wdecay=0.001

(test acc. 0.6244, 22 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_plus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.609, 18 modules)

Stream Sin

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_in --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=most_likely --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.7081, 21 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_in --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.6646, 15 modules)

Stream Sout

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_out --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.5849, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_out --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 0 --regenerate_seed 0

(test acc. 0.6567, 11 modules)

Stream Spl

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --pr_name lmc_cr --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=0 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=10 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pl --temp=1 --regenerate_seed 0 --wdecay=0.001

(test acc. 0.6241, 19 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_pl --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-4 --regenerate_seed 0

(test acc. 0.6391, 18 modules)


Stream Slong30 -- 30 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --epochs=50 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long30 --temp=1 --wdecay=0.001

(test acc. 62.44, 50 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --epochs=50 --hidden_size=64 --lr=0.001 --module_init=most_likely --multihead=gated_linear --n_tasks=100 --seed=180 --task_sequence=s_long30 --wdecay=0.001

(test acc. 64.58, 64 modules)


Stream Slong -- 100 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=4 --epochs=100 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long --temp=1 --pr_name s_long_cr --wdecay=0

(test acc. 63.88, 32 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --n_tasks 100 --hidden_size 64 --searchspace topdown --keep_bn_in_eval_after_freeze 1 --pr_name s_long_cr --copy_batchstats 1 --track_running_stats_bn 1 --wand_notes correct_MNTDP --task_sequence s_long --gating MNTDP --shuffle_test 0 --epochs 50 --lr 1e-3 --wdecay 1e-3

(test acc. 68.92, 142 modules)


OOD generalization experiments

LMC

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=10 --no_projection_phase 0 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0 --task_agnostic_test=0

EWC

python main_transfer.py --epochs=50 --ewc=1000 --hidden_size=256 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --pr_name lmc_cr --multihead=usual --normalize_data=1  --task_sequence=s_ood --use_structural=0 --wdecay=0 --projection_phase_length=0

MNTDP

python main_transfer_mntdp.py --epochs=50 --regenerate_seed 0 --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --pr_name lmc_cr --lr=0.01 --module_init=none --multihead=usual --normalize_data=1 --task_sequence=s_ood --use_structural=0 --wdecay=0

LMC (no projetion)

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=0 --no_projection_phase 1 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0

Plug and play (combining independently trained modular learners)

python main_plug_and_play.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --epochs_str_only_after_addition=1 --pr_name lmc_cr --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=mean --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=3 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=10 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pnp_comp --temp=1 --wdecay=0.001

A list of hyperparameters used for other baselines can be found in the baselines.txt file.


References

Owner
Oleksiy Ostapenko
Oleksiy Ostapenko
This is a repository for a semantic segmentation inference API using the OpenVINO toolkit

BMW-IntelOpenVINO-Segmentation-Inference-API This is a repository for a semantic segmentation inference API using the OpenVINO toolkit. It's supported

BMW TechOffice MUNICH 34 Nov 24, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
Code from PropMix, accepted at BMVC'21

PropMix: Hard Sample Filtering and Proportional MixUp for Learning with Noisy Labels This repository is the official implementation of Hard Sample Fil

6 Dec 21, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Nvidia Semantic Segmentation monorepo

Paper | YouTube | Cityscapes Score Pytorch implementation of our paper Hierarchical Multi-Scale Attention for Semantic Segmentation. Please refer to t

NVIDIA Corporation 1.6k Jan 04, 2023
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022