Codebase for the paper titled "Continual learning with local module selection"

Related tags

Deep LearningLMC
Overview

This repository contains the codebase for the paper Continual Learning via Local Module Composition.


Setting up the environemnt

Create a new conda environment and install the requirements.

conda create --name ENV python=3.7
conda activate ENV
pip install -r requirements.txt
pip install -e Utils/ctrl/
pip install Utils/nngeometry/

CTrL Benchmark

All experiments were run on Nvidia Quadro RTX 8000 GPUs. To run CTrL experiments use the following comands for different streams:

Stream S-

LMC (task agnostic)

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_minus --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.6863, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_minus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3

(test acc. 0.667, 12 modules)

Stream S+

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --pr_name lmc_cr --epochs=100 --epochs_str_only_after_addition=1 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_plus --temp=1 --wdecay=0.001

(test acc. 0.6244, 22 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_plus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.609, 18 modules)

Stream Sin

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_in --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=most_likely --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.7081, 21 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_in --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.6646, 15 modules)

Stream Sout

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_out --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.5849, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_out --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 0 --regenerate_seed 0

(test acc. 0.6567, 11 modules)

Stream Spl

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --pr_name lmc_cr --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=0 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=10 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pl --temp=1 --regenerate_seed 0 --wdecay=0.001

(test acc. 0.6241, 19 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_pl --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-4 --regenerate_seed 0

(test acc. 0.6391, 18 modules)


Stream Slong30 -- 30 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --epochs=50 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long30 --temp=1 --wdecay=0.001

(test acc. 62.44, 50 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --epochs=50 --hidden_size=64 --lr=0.001 --module_init=most_likely --multihead=gated_linear --n_tasks=100 --seed=180 --task_sequence=s_long30 --wdecay=0.001

(test acc. 64.58, 64 modules)


Stream Slong -- 100 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=4 --epochs=100 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long --temp=1 --pr_name s_long_cr --wdecay=0

(test acc. 63.88, 32 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --n_tasks 100 --hidden_size 64 --searchspace topdown --keep_bn_in_eval_after_freeze 1 --pr_name s_long_cr --copy_batchstats 1 --track_running_stats_bn 1 --wand_notes correct_MNTDP --task_sequence s_long --gating MNTDP --shuffle_test 0 --epochs 50 --lr 1e-3 --wdecay 1e-3

(test acc. 68.92, 142 modules)


OOD generalization experiments

LMC

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=10 --no_projection_phase 0 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0 --task_agnostic_test=0

EWC

python main_transfer.py --epochs=50 --ewc=1000 --hidden_size=256 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --pr_name lmc_cr --multihead=usual --normalize_data=1  --task_sequence=s_ood --use_structural=0 --wdecay=0 --projection_phase_length=0

MNTDP

python main_transfer_mntdp.py --epochs=50 --regenerate_seed 0 --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --pr_name lmc_cr --lr=0.01 --module_init=none --multihead=usual --normalize_data=1 --task_sequence=s_ood --use_structural=0 --wdecay=0

LMC (no projetion)

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=0 --no_projection_phase 1 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0

Plug and play (combining independently trained modular learners)

python main_plug_and_play.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --epochs_str_only_after_addition=1 --pr_name lmc_cr --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=mean --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=3 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=10 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pnp_comp --temp=1 --wdecay=0.001

A list of hyperparameters used for other baselines can be found in the baselines.txt file.


References

Owner
Oleksiy Ostapenko
Oleksiy Ostapenko
MohammadReza Sharifi 27 Dec 13, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022