Codebase for the paper titled "Continual learning with local module selection"

Related tags

Deep LearningLMC
Overview

This repository contains the codebase for the paper Continual Learning via Local Module Composition.


Setting up the environemnt

Create a new conda environment and install the requirements.

conda create --name ENV python=3.7
conda activate ENV
pip install -r requirements.txt
pip install -e Utils/ctrl/
pip install Utils/nngeometry/

CTrL Benchmark

All experiments were run on Nvidia Quadro RTX 8000 GPUs. To run CTrL experiments use the following comands for different streams:

Stream S-

LMC (task agnostic)

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_minus --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.6863, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_minus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3

(test acc. 0.667, 12 modules)

Stream S+

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --pr_name lmc_cr --epochs=100 --epochs_str_only_after_addition=1 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_plus --temp=1 --wdecay=0.001

(test acc. 0.6244, 22 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_plus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.609, 18 modules)

Stream Sin

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_in --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=most_likely --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.7081, 21 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_in --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.6646, 15 modules)

Stream Sout

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_out --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.5849, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_out --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 0 --regenerate_seed 0

(test acc. 0.6567, 11 modules)

Stream Spl

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --pr_name lmc_cr --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=0 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=10 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pl --temp=1 --regenerate_seed 0 --wdecay=0.001

(test acc. 0.6241, 19 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_pl --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-4 --regenerate_seed 0

(test acc. 0.6391, 18 modules)


Stream Slong30 -- 30 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --epochs=50 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long30 --temp=1 --wdecay=0.001

(test acc. 62.44, 50 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --epochs=50 --hidden_size=64 --lr=0.001 --module_init=most_likely --multihead=gated_linear --n_tasks=100 --seed=180 --task_sequence=s_long30 --wdecay=0.001

(test acc. 64.58, 64 modules)


Stream Slong -- 100 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=4 --epochs=100 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long --temp=1 --pr_name s_long_cr --wdecay=0

(test acc. 63.88, 32 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --n_tasks 100 --hidden_size 64 --searchspace topdown --keep_bn_in_eval_after_freeze 1 --pr_name s_long_cr --copy_batchstats 1 --track_running_stats_bn 1 --wand_notes correct_MNTDP --task_sequence s_long --gating MNTDP --shuffle_test 0 --epochs 50 --lr 1e-3 --wdecay 1e-3

(test acc. 68.92, 142 modules)


OOD generalization experiments

LMC

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=10 --no_projection_phase 0 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0 --task_agnostic_test=0

EWC

python main_transfer.py --epochs=50 --ewc=1000 --hidden_size=256 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --pr_name lmc_cr --multihead=usual --normalize_data=1  --task_sequence=s_ood --use_structural=0 --wdecay=0 --projection_phase_length=0

MNTDP

python main_transfer_mntdp.py --epochs=50 --regenerate_seed 0 --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --pr_name lmc_cr --lr=0.01 --module_init=none --multihead=usual --normalize_data=1 --task_sequence=s_ood --use_structural=0 --wdecay=0

LMC (no projetion)

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=0 --no_projection_phase 1 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0

Plug and play (combining independently trained modular learners)

python main_plug_and_play.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --epochs_str_only_after_addition=1 --pr_name lmc_cr --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=mean --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=3 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=10 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pnp_comp --temp=1 --wdecay=0.001

A list of hyperparameters used for other baselines can be found in the baselines.txt file.


References

Owner
Oleksiy Ostapenko
Oleksiy Ostapenko
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
🤖 A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

joisino 20 Aug 21, 2022
Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Self-Tuning for Data-Efficient Deep Learning This repository contains the implementation code for paper: Self-Tuning for Data-Efficient Deep Learning

THUML @ Tsinghua University 101 Dec 11, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by â„“1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022