The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

Overview

ReCo - Regional Contrast

This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regional Contrast, introduced by Shikun Liu, Shuaifeng Zhi, Edward Johns, and Andrew Davison.

Check out our project page for more qualitative results.

Datasets

ReCo is evaluated with three datasets: CityScapes, PASCAL VOC and SUN RGB-D in the full label mode, among which CityScapes and PASCAL VOC are additionally evaluated in the partial label mode.

  • For CityScapes, please download the original dataset from the official CityScapes site: leftImg8bit_trainvaltest.zip and gtFine_trainvaltest.zip. Create and extract them to the corresponding dataset/cityscapes folder.
  • For Pascal VOC, please download the original training images from the official PASCAL site: VOCtrainval_11-May-2012.tar and the augmented labels here: SegmentationClassAug.zip. Extract the folder JPEGImages and SegmentationClassAug into the corresponding dataset/pascal folder.
  • For SUN RGB-D, please download the train dataset here: SUNRGBD-train_images.tgz, test dataset here: SUNRGBD-test_images.tgz and labels here: sunrgbd_train_test_labels.tar.gz. Extract and place them into the corresponding dataset/sun folder.

After making sure all datasets having been downloaded and placed correctly, run each processing file python dataset/{DATASET}_preprocess.py to pre-process each dataset ready for the experiments. The preprocessing file also includes generating partial label for Cityscapes and Pascal dataset with three random seeds. Feel free to modify the partial label size and random seed to suit your own research setting.

For the lazy ones: just download the off-the-shelf pre-processed datasets here: CityScapes, Pascal VOC and SUN RGB-D.

Training Supervised and Semi-supervised Models

In this paper, we introduce two novel training modes for semi-supervised learning.

  1. Full Labels Partial Dataset: A sparse subset of training images has full ground-truth labels, with the remaining data unlabelled.
  2. Partial Labels Full Dataset: All images have some labels, but covering only a sparse subset of pixels.

Running the following four scripts would train each mode with supervised or semi-supervised methods respectively:

python train_sup.py             # Supervised learning with full labels.
python train_semisup.py         # Semi-supervised learning with full labels.
python train_sup_partial.py     # Supervised learning with partial labels.
python train_semisup_patial.py  # Semi-supervised learning with partial labels.

Important Flags

All supervised and semi-supervised methods can be trained with different flags (hyper-parameters) when running each training script. We briefly introduce some important flags for the experiments below.

Flag Name Usage Comments
num_labels number of labelled images in the training set, choose 0 for training all labelled images only available in the full label mode
partial percentage of labeled pixels for each class in the training set, choose p0, p1, p5, p25 for training 1, 1%, 5%, 25% labelled pixel(s) respectively only available in the partial label mode
num_negatives number of negative keys sampled for each class in each mini-batch only applied when training with ReCo loss
num_queries number of queries sampled for each class in each mini-batch only applied when training with ReCo loss
output_dim dimensionality for pixel-level representation only applied when training with ReCo loss
temp temperature used in contrastive learning only applied when training with ReCo loss
apply_aug semi-supervised methods with data augmentation, choose cutout, cutmix, classmix only available in the semi-supervised methods; our implementations for CutOut, CutMix and ClassMix
weak_threshold weak threshold delta_w in active sampling only applied when training with ReCo loss
strong_threshold strong threshold delta_s in active sampling only applied when training with ReCo loss
apply_reco toggle on or off apply our proposed ReCo loss

Training ReCo + ClassMix with the fewest full label setting in each dataset (the least appeared classes in each dataset have appeared in 5 training images):

python train_semisup.py --dataset pascal --num_labels 60 --apply_aug classmix --apply_reco
python train_semisup.py --dataset cityscapes --num_labels 20 --apply_aug classmix --apply_reco
python train_semisup.py --dataset sun --num_labels 50 --apply_aug classmix --apply_reco

Training ReCo + ClassMix with the fewest partial label setting in each dataset (each class in each training image only has 1 labelled pixel):

python train_semisup_partial.py --dataset pascal --partial p0 --apply_aug classmix --apply_reco
python train_semisup_partial.py --dataset cityscapes --partial p0 --apply_aug classmix --apply_reco
python train_semisup_partial.py --dataset sun --partial p0 --apply_aug classmix --apply_reco

Training ReCo + Supervised with all labelled data:

python train_sup.py --dataset {DATASET} --num_labels 0 --apply_reco

Training with ReCo is expected to require 12 - 16G of memory in a single GPU setting. All the other baselines can be trained under 12G in a single GPU setting.

Visualisation on Pre-trained Models

We additionally provide the pre-trained baselines and our method for 20 labelled Cityscapes and 60 labelled Pascal VOC, as examples for visualisation. The precise mIoU performance for each model is listed in the following table. The pre-trained models will produce the exact same qualitative results presented in the original paper.

Supervised ClassMix ReCo + ClassMix
CityScapes (20 Labels) 38.10 [link] 45.13 [link] 50.14 [link]
Pascal VOC (60 Labels) 36.06 [link] 53.71 [link] 57.12 [link]

Download the pre-trained models with the links above, then create and place them into the folder model_weights in this repository. Run python visual.py to visualise the results.

Other Notices

  1. We observe that the performance for the full label semi-supervised setting in CityScapes dataset is not stable across different machines, for which all methods may drop 2-5% performance, though the ranking keeps the same. Different GPUs in the same machine do not affect the performance. The performance for the other datasets in the full label mode, and the performance for all datasets in the partial label mode is consistent.
  2. Please use --seed 0, 1, 2 to accurately reproduce/compare our results with the exactly same labelled and unlabelled split we used in our experiments.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{liu2021reco,
    title={Bootstrapping Semantic Segmentation with Regional Contrast},
    author={Liu, Shikun and Zhi, Shuaifeng and Johns, Edward and Davison, Andrew J},
    journal={arXiv preprint arXiv:2104.04465},
    year={2021}
}

Contact

If you have any questions, please contact [email protected].

Owner
Shikun Liu
Ph.D. Student, The Dyson Robotics Lab at Imperial College.
Shikun Liu
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022