The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

Overview

ReCo - Regional Contrast

This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regional Contrast, introduced by Shikun Liu, Shuaifeng Zhi, Edward Johns, and Andrew Davison.

Check out our project page for more qualitative results.

Datasets

ReCo is evaluated with three datasets: CityScapes, PASCAL VOC and SUN RGB-D in the full label mode, among which CityScapes and PASCAL VOC are additionally evaluated in the partial label mode.

  • For CityScapes, please download the original dataset from the official CityScapes site: leftImg8bit_trainvaltest.zip and gtFine_trainvaltest.zip. Create and extract them to the corresponding dataset/cityscapes folder.
  • For Pascal VOC, please download the original training images from the official PASCAL site: VOCtrainval_11-May-2012.tar and the augmented labels here: SegmentationClassAug.zip. Extract the folder JPEGImages and SegmentationClassAug into the corresponding dataset/pascal folder.
  • For SUN RGB-D, please download the train dataset here: SUNRGBD-train_images.tgz, test dataset here: SUNRGBD-test_images.tgz and labels here: sunrgbd_train_test_labels.tar.gz. Extract and place them into the corresponding dataset/sun folder.

After making sure all datasets having been downloaded and placed correctly, run each processing file python dataset/{DATASET}_preprocess.py to pre-process each dataset ready for the experiments. The preprocessing file also includes generating partial label for Cityscapes and Pascal dataset with three random seeds. Feel free to modify the partial label size and random seed to suit your own research setting.

For the lazy ones: just download the off-the-shelf pre-processed datasets here: CityScapes, Pascal VOC and SUN RGB-D.

Training Supervised and Semi-supervised Models

In this paper, we introduce two novel training modes for semi-supervised learning.

  1. Full Labels Partial Dataset: A sparse subset of training images has full ground-truth labels, with the remaining data unlabelled.
  2. Partial Labels Full Dataset: All images have some labels, but covering only a sparse subset of pixels.

Running the following four scripts would train each mode with supervised or semi-supervised methods respectively:

python train_sup.py             # Supervised learning with full labels.
python train_semisup.py         # Semi-supervised learning with full labels.
python train_sup_partial.py     # Supervised learning with partial labels.
python train_semisup_patial.py  # Semi-supervised learning with partial labels.

Important Flags

All supervised and semi-supervised methods can be trained with different flags (hyper-parameters) when running each training script. We briefly introduce some important flags for the experiments below.

Flag Name Usage Comments
num_labels number of labelled images in the training set, choose 0 for training all labelled images only available in the full label mode
partial percentage of labeled pixels for each class in the training set, choose p0, p1, p5, p25 for training 1, 1%, 5%, 25% labelled pixel(s) respectively only available in the partial label mode
num_negatives number of negative keys sampled for each class in each mini-batch only applied when training with ReCo loss
num_queries number of queries sampled for each class in each mini-batch only applied when training with ReCo loss
output_dim dimensionality for pixel-level representation only applied when training with ReCo loss
temp temperature used in contrastive learning only applied when training with ReCo loss
apply_aug semi-supervised methods with data augmentation, choose cutout, cutmix, classmix only available in the semi-supervised methods; our implementations for CutOut, CutMix and ClassMix
weak_threshold weak threshold delta_w in active sampling only applied when training with ReCo loss
strong_threshold strong threshold delta_s in active sampling only applied when training with ReCo loss
apply_reco toggle on or off apply our proposed ReCo loss

Training ReCo + ClassMix with the fewest full label setting in each dataset (the least appeared classes in each dataset have appeared in 5 training images):

python train_semisup.py --dataset pascal --num_labels 60 --apply_aug classmix --apply_reco
python train_semisup.py --dataset cityscapes --num_labels 20 --apply_aug classmix --apply_reco
python train_semisup.py --dataset sun --num_labels 50 --apply_aug classmix --apply_reco

Training ReCo + ClassMix with the fewest partial label setting in each dataset (each class in each training image only has 1 labelled pixel):

python train_semisup_partial.py --dataset pascal --partial p0 --apply_aug classmix --apply_reco
python train_semisup_partial.py --dataset cityscapes --partial p0 --apply_aug classmix --apply_reco
python train_semisup_partial.py --dataset sun --partial p0 --apply_aug classmix --apply_reco

Training ReCo + Supervised with all labelled data:

python train_sup.py --dataset {DATASET} --num_labels 0 --apply_reco

Training with ReCo is expected to require 12 - 16G of memory in a single GPU setting. All the other baselines can be trained under 12G in a single GPU setting.

Visualisation on Pre-trained Models

We additionally provide the pre-trained baselines and our method for 20 labelled Cityscapes and 60 labelled Pascal VOC, as examples for visualisation. The precise mIoU performance for each model is listed in the following table. The pre-trained models will produce the exact same qualitative results presented in the original paper.

Supervised ClassMix ReCo + ClassMix
CityScapes (20 Labels) 38.10 [link] 45.13 [link] 50.14 [link]
Pascal VOC (60 Labels) 36.06 [link] 53.71 [link] 57.12 [link]

Download the pre-trained models with the links above, then create and place them into the folder model_weights in this repository. Run python visual.py to visualise the results.

Other Notices

  1. We observe that the performance for the full label semi-supervised setting in CityScapes dataset is not stable across different machines, for which all methods may drop 2-5% performance, though the ranking keeps the same. Different GPUs in the same machine do not affect the performance. The performance for the other datasets in the full label mode, and the performance for all datasets in the partial label mode is consistent.
  2. Please use --seed 0, 1, 2 to accurately reproduce/compare our results with the exactly same labelled and unlabelled split we used in our experiments.

Citation

If you found this code/work to be useful in your own research, please considering citing the following:

@article{liu2021reco,
    title={Bootstrapping Semantic Segmentation with Regional Contrast},
    author={Liu, Shikun and Zhi, Shuaifeng and Johns, Edward and Davison, Andrew J},
    journal={arXiv preprint arXiv:2104.04465},
    year={2021}
}

Contact

If you have any questions, please contact [email protected].

Owner
Shikun Liu
Ph.D. Student, The Dyson Robotics Lab at Imperial College.
Shikun Liu
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021)

L1-Refinement Paddle implementation for "Cross-Lingual Word Embedding Refinement by ℓ1 Norm Optimisation" (NAACL 2021) 🙈 A more detailed readme is co

Lincedo Lab 4 Jun 09, 2021
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
High frequency AI based algorithmic trading module.

Flow Flow is a high frequency algorithmic trading module that uses machine learning to self regulate and self optimize for maximum return. The current

59 Dec 14, 2022
Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Zitong Yu 22 Nov 10, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
5 Jan 05, 2023