A fast model to compute optical flow between two input images.

Related tags

Deep LearningDCVNet
Overview

DCVNet: Dilated Cost Volumes for Fast Optical Flow

This repository contains our implementation of the paper:

@InProceedings{jiang2021dcvnet,
  title={DCVNet: Dilated Cost Volumes for Fast Optical Flow},
  author={Jiang, Huaizu and Learned-Miller, Erik},
  booktitle={arXiv},
  year={2021}
}

Need a fast optical flow model? Try DCVNet

  • Fast. On a mid-end GTX 1080ti GPU, DCVNet runs in real time at 71 fps (frames-per-second) to process images with sizes of 1024 × 436.
  • Compact and accurate. DCVNet has 4.94M parameters and consumes 1.68GB GPU memory during inference. It achieves comparable accuracy to state-of-the-art approaches on the MPI Sintel benchmark.

In the figure above, for each model, the circle radius indicates the number of parameters (larger radius means more parameters). The center of a circle corresponds to a model’s EPE (end-point-error).

Requirements

This code has been tested with Python 3.7, PyTorch 1.6.0, and CUDA 9.2. We suggest to use a conda environment.

conda create -n dcvnet
conda activate dcvnet
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboardX scipy opencv -c pytorch
pip install yacs

We use an open-source implementation https://github.com/ClementPinard/Pytorch-Correlation-extension to compute dilated cost volumes. Follow the instructions there to install this module.

Demos

Pretrained models can be downloaded by running

./scripts/download_models.sh

or downloaded from Google drive.

You can demo a pre-trained model on a sequence of frames

python demo.py --weights-path pretrained_models/sceneflow_dcvnet.pth --path demo-frames

Required data

The following datasets are required to train and evaluate DCVNet.

We borrow the data loaders used in RAFT. By default, dcvnet/data/raft/datasets.py will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the datasets folder

|-- datasets
    |-- Driving
        |-- frames_cleanpass
        |-- optical_flow
    |-- FlyingThings3D_subset
        |-- train
            |-- flow
            |-- image_clean
        |-- val
            |-- flow
            |-- image_clean
    |-- Monkaa
        |-- frames_cleanpass
        |-- optical_flow
    |-- MPI_Sintel
        |-- test
        |-- training
    |-- KITTI2012
        |-- testing
        |-- training
    |-- KITTI2015
        |-- testing
        |-- training
    |-- HD1K
        |-- hd1k_flow_gt
        |-- hd1k_input

Evaluation

You can evaluate a pre-trained model using tools/evaluate_optical_flow.py

python evaluate_optical_flow.py --weights_path models/dcvnet-sceneflow.pth --dataset sintel

You can optionally add the --amp switch to do inference in mixed precision to reduce GPU memory usage.

Training

We used 8 GTX 1080ti GPUs for training. Training logs will be written to the output folder, which can be visualized using tensorboard.

# train on the synthetic scene flow dataset
python tools/train_optical_flow.py --config-file configs/sceneflow_dcvnet.yaml 

# fine-tune it on the MPI-Sintel dataset
# 4 GPUs are sufficient, but here we use 8 GPUs for fast training
python tools/train_optical_flow.py --config-file configs/sintel_dcvnet.yaml --pretrain-weights output/SceneFlow/sceneflow_dcvnet/default/train_epoch_50.pth

# fine-tune it on the KITTI 2012 and 2015 dataset
# we only use 6 GPUs (3 GPUs are sufficient) since the batch size is 6
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5 python tools/train_optical_flow.py --config-file configs/kitti12+15_dcvnet.yaml --pretrain-weights output/Sintel+SceneFlow/sintel_dcvnet/default/train_epoch_5.pth

Note on the inference speed

In the main branch, the computation of the dilated cost volumes can be further optimized without using the for loop. Checkout the efficient branch for details. If you are interested in testing the inference speed, we suggest to switch to the efficient branch.

git checkout efficient
CUDA_VISIBLE_DEVICES=0 python tools/evaluate_optical_flow.py --dry-run

We haven't fixed this problem because our pre-trained models are based on the implementation in the main branch, which are not compatible with the resizing in the efficient branch. We need to re-train all our models. It will be fixed soon.

To-do

  • Fix the problem of efficient cost volume computation.
  • Train the model on the AutoFlow dataset.

Acknowledgment

Our implementation is built on top of RAFT, Pytorch-Correlation-extension, yacs, Detectron2, and semseg. We thank the authors for releasing and maintaining the code.

Owner
Huaizu Jiang
Assistant Professor at Northeastern University.
Huaizu Jiang
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Code base for "On-the-Fly Test-time Adaptation for Medical Image Segmentation"

On-the-Fly Adaptation Official Pytorch Code base for On-the-Fly Test-time Adaptation for Medical Image Segmentation Paper Introduction One major probl

Jeya Maria Jose 17 Nov 10, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
covid question answering datasets and fine tuned models

Covid-QA Fine tuned models for question answering on Covid-19 data. Hosted Inference This model has been contributed to huggingface.Click here to see

Abhijith Neil Abraham 19 Sep 09, 2021