A lightweight library to compare different PyTorch implementations of the same network architecture.

Related tags

Deep LearningTorchBug
Overview

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compare, the different leaf modules (i.e., lowest level PyTorch modules, such as torch.nn.Conv2d) present both in the target model and the new model. These leaf modules are distinguished based on their attributes, so that an instance of Conv2d with a kernel_size of 3 and stride of 1 is counted separately from a Conv2d with kernel_size of 3 but stride 2.

Further, when the leaf modules match, the library also provides you the functionality to initialize both the models equivalently, by initializing the leaf modules with weights using seeds which are obtained from the hash of their attributes. TorchBug then lets you pass the same input through both the models, and compare their outputs, or the outputs of intermediate leaf modules, to help find where the new model implementaion deviates from the target model.

Setup | Usage | Docs | Examples

Setup

To install, simply clone the repository, cd into the TorchBug folder, and run the following command:

pip install .

Usage

To get started, check out demo.py.

Docs

Docstrings can be found for all the functions. Refer compare.py and model_summary.py for the main functions.

Examples

Summary of a model

Each row in the tables indicates a specific module type, along with a combination of its attributes, as shown in the columns.

  • The second row in the second table indicates, for example, that there are two instances of Conv2d with 6 in_channels and 6 out_channels in the Target Model. Each of these modules has 330 parameters.

Summary of a model

Comparison of leaf modules

TorchBug lets you compare the leaf modules present in both models, and shows you the missing/extraneous modules present in either.

Comparison of leaf modules

Comparison of leaf modules invoked in the forward pass

The comparison of leaf modules invoked in forward pass ensures that the registered leaf modules are indeed consumed in the forward function of the models.

Comparison of leaf modules

Comparison of outputs of all leaf modules

After instantiating the Target and New models equivalently, and passing the same data through both of them, the outputs of intermediate leaf modules (of the same types and attributes) are compared (by brute force).

  • The second row in the first table indicates, for example, that there are two instances of Conv2d with 6 in_channels and 6 out_channels in both the models, and their outputs match.

Module-wise comparison of models

Comparison of outputs of specific leaf modules only

TorchBug lets you mark specific leaf modules in the models, with names, and shows you whether the outputs of these marked modules match.

Comparison of outputs of marked modules

  • In the above example, a convolution and two linear layers in the New Model were marked with names "Second Convolution", "First Linear Layer", and "Second Linear Layer".
  • A convolution in the Target Model was marked with name "Second Convolution".
  • All the other leaf modules in the Target Model were marked using a convenience function, which set the names to a string describing the module.
Owner
Arjun Krishnakumar
Research Assistant (HiWi) | Master's in Computer Science @ University of Freiburg
Arjun Krishnakumar
To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

To propose and implement a multi-class classification approach to disaster assessment from the given data set of post-earthquake satellite imagery.

Kunal Wadhwa 2 Jan 05, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
5 Jan 05, 2023
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022