A lightweight library to compare different PyTorch implementations of the same network architecture.

Related tags

Deep LearningTorchBug
Overview

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compare, the different leaf modules (i.e., lowest level PyTorch modules, such as torch.nn.Conv2d) present both in the target model and the new model. These leaf modules are distinguished based on their attributes, so that an instance of Conv2d with a kernel_size of 3 and stride of 1 is counted separately from a Conv2d with kernel_size of 3 but stride 2.

Further, when the leaf modules match, the library also provides you the functionality to initialize both the models equivalently, by initializing the leaf modules with weights using seeds which are obtained from the hash of their attributes. TorchBug then lets you pass the same input through both the models, and compare their outputs, or the outputs of intermediate leaf modules, to help find where the new model implementaion deviates from the target model.

Setup | Usage | Docs | Examples

Setup

To install, simply clone the repository, cd into the TorchBug folder, and run the following command:

pip install .

Usage

To get started, check out demo.py.

Docs

Docstrings can be found for all the functions. Refer compare.py and model_summary.py for the main functions.

Examples

Summary of a model

Each row in the tables indicates a specific module type, along with a combination of its attributes, as shown in the columns.

  • The second row in the second table indicates, for example, that there are two instances of Conv2d with 6 in_channels and 6 out_channels in the Target Model. Each of these modules has 330 parameters.

Summary of a model

Comparison of leaf modules

TorchBug lets you compare the leaf modules present in both models, and shows you the missing/extraneous modules present in either.

Comparison of leaf modules

Comparison of leaf modules invoked in the forward pass

The comparison of leaf modules invoked in forward pass ensures that the registered leaf modules are indeed consumed in the forward function of the models.

Comparison of leaf modules

Comparison of outputs of all leaf modules

After instantiating the Target and New models equivalently, and passing the same data through both of them, the outputs of intermediate leaf modules (of the same types and attributes) are compared (by brute force).

  • The second row in the first table indicates, for example, that there are two instances of Conv2d with 6 in_channels and 6 out_channels in both the models, and their outputs match.

Module-wise comparison of models

Comparison of outputs of specific leaf modules only

TorchBug lets you mark specific leaf modules in the models, with names, and shows you whether the outputs of these marked modules match.

Comparison of outputs of marked modules

  • In the above example, a convolution and two linear layers in the New Model were marked with names "Second Convolution", "First Linear Layer", and "Second Linear Layer".
  • A convolution in the Target Model was marked with name "Second Convolution".
  • All the other leaf modules in the Target Model were marked using a convenience function, which set the names to a string describing the module.
Owner
Arjun Krishnakumar
Research Assistant (HiWi) | Master's in Computer Science @ University of Freiburg
Arjun Krishnakumar
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
Scenic: A Jax Library for Computer Vision and Beyond

Scenic Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop c

Google Research 1.6k Dec 27, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
A Novel Plug-in Module for Fine-grained Visual Classification

Pytorch implementation for A Novel Plug-in Module for Fine-Grained Visual Classification. fine-grained visual classification task.

ChouPoYung 109 Dec 20, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
'Solving the sampling problem of the Sycamore quantum supremacy circuits

solve_sycamore This repo contains data, contraction code, and contraction order for the paper ''Solving the sampling problem of the Sycamore quantum s

Feng Pan 29 Nov 28, 2022
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022