Unsupervised Video Interpolation using Cycle Consistency

Overview

Unsupervised Video Interpolation using Cycle Consistency

Project | Paper | YouTube

Unsupervised Video Interpolation using Cycle Consistency
Fitsum A. Reda, Deqing Sun*, Aysegul Dundar, Mohammad Shoeybi, Guilin Liu, Kevin J. Shih, Andrew Tao, Jan Kautz, Bryan Catanzaro
NVIDIA Corporation
In International Conferene on Computer Vision (ICCV) 2019.
( * Currently affiliated with Google. )

Installation
# Get unsupervised video interpolation source codes
git clone https://github.com/NVIDIA/unsupervised-video-interpolation.git
cd unsupervised-video-interpolation
mkdir pretrained_models

# Build Docker Image
docker build -t unsupervised-video-interpolation -f Dockerfile .

If you prefer not to use docker, you can manually install the following requirements:

  • An NVIDIA GPU and CUDA 9.0 or higher. Some operations only have gpu implementation.
  • PyTorch (>= 1.0)
  • Python 3
  • numpy
  • scikit-image
  • imageio
  • pillow
  • tqdm
  • tensorboardX
  • natsort
  • ffmpeg
  • torchvision

To propose a model or change for inclusion, please submit a pull request.

Multiple GPU training and mixed precision training are supported, and the code provides examples for training and inference. For more help, type

python3 train.py --help

Network Architectures

Our repo now supports Super SloMo. Other video interpolation architectures can be integrated with our repo with minimal changes, for instance DVF or SepConv.

Pre-trained Models

We've included pre-trained models trained with cycle consistency (CC) alone, or with cycle consistency with Psuedo-supervised (CC + PS) losses.
Download checkpoints to a folder pretrained_models.

Supervised Baseline Weights

Unsupervised Finetuned Weights

Fully Unsupervised Weights for UCF101 evaluation

Data Loaders

We use VideoInterp and CycleVideoInterp (in datasets) dataloaders for all frame sequences, i.e. Adobe, YouTube, SlowFlow, Sintel, and UCF101.

We split Slowflow dataset into disjoint sets: A low FPS training (3.4K frames) and a high FPS test (414 frames) subset. We form the test set by selecting the first nine frames in each of the 46 clips, and train set by temporally sub-sampling the remaining frames from 240-fps to 30-fps. During evaluation, our models take as input the first and ninth frame in each test clip and interpolate seven intermediate frames. We follow a similar procedure for Sintel-1008fps, but interpolate 41 intermediate frames, i.e., conversion of frame rate from 24- to 1008-fps. Note, since SlowFlow and Sintel are of high resolution, we downsample all frames by a factor of 2 isotropically.
All training and evaluations presented in the paper are done on the spatially downsampled sequences.

For UCF101, we simply use the the test provided here.

Generating Interpolated Frames or Videos

  • --write_video and --write_images, if enabled will create an interpolated video and interpolated frame sequences, respectively.
#Example creation of interpolated videos, where we interleave low FPS input frames with one or more interpolated intermediate frames.
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file ${/path/to/input/sequences} \
    --name ${video_name} --save ${/path/to/output/folder} --post_fix ${output_image_tag} \
    --resume ${/path/to/pre-trained/model} --write_video
  • If input sequences for interpolation do not contain ground-truth intermediate frames, add --val_sample_rate 0 and --val_step_size 1 to the example script above.
  • For a simple test on two input frames, set --val_file to the folder containing both frames, and set --val_sample_rate 0, --val_step_size 1.

Images : Results and Comparisons

.
.
.

Inference for Unsupervised Models

  • UCF101: A total of 379 folders, each with three frames, with the middle frame being the ground-truth for a single frame interpolation.
# Evaluation of model trained with CC alone on Adobe-30fps dataset
# PSNR: 34.47, SSIM: 0.946, IE: 5.50
python3 eval.py --model CycleHJSuperSloMo --num_interp 1 --flow_scale 1 --val_file /path/to/ucf/root \
    --resume ./pretrained_models/fully_unsupervised_adobe30fps.pth
# Evaluation of model trained with CC alone on Battlefield-30fps dataset
# PSNR: 34.55, SSIM: 0.947, IE: 5.38
python3 eval.py --model CycleHJSuperSloMo --num_interp 1 --flow_scale 1 --val_file /path/to/ucf/root \
    --resume ./pretrained_models/fully_unsupervised_battlefield30fps.pth
  • SlowFlow: A total of 46 folders, each with nine frames, with the intermediate nine frames being ground-truths for a 30->240FPS multi-frame interpolation.
# Evaluation of model trained with CC alone on SlowFlow-30fps train split
# PSNR: 32.35, SSIM: 0.886, IE: 6.78
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/unsupervised_random2slowflow.pth
# Evaluation of model finetuned with CC+PS losses on SlowFlow-30fps train split.
# Model pre-trained with supervision on Adobe-240fps.
# PSNR: 33.05, SSIM: 0.890, IE: 6.62
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/unsupervised_adobe2slowflow.pth
# Evaluation of model finetuned with CC+PS losses on SlowFlow-30fps train split.
# Model pre-trained with supervision on Adobe+YouTube-240fps.
# PSNR: 33.20, SSIM: 0.891, IE: 6.56
python3 eval.py --model CycleHJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/unsupervised_adobe+youtube2slowflow.pth
  • Sintel: A total of 13 folders, each with 43 frames, with the intermediate 41 frames being ground-truths for a 30->1008FPS multi-frame interpolation.
We simply use the same commands used for SlowFlow, but setting `--num_interp 41`
and the corresponding `--resume *2sintel.pth` pre-trained models should lead to the number we presented in our papers.

Inference for Supervised Baseline Models

  • UCF101: A total of 379 folders, each with three frames, with the middle frame being the ground-truth for a single frame interpolation.
# Evaluation of model trained with Paird-GT on Adobe-240fps dataset
# PSNR: 34.63, SSIM: 0.946, IE: 5.48
python3 eval.py --model HJSuperSloMo --num_interp 1 --flow_scale 1 --val_file /path/to/ucf/root \
    --resume ./pretrained_models/baseline_superslomo_adobe.pth
  • SlowFlow: A total of 46 folders, each with nine frames, with the intermediate nine frames being ground-truths for a 30->240FPS multi-frame interpolation.
# Evaluation of model trained with paird-GT on Adobe-240fps dataset
# PSNR: 32.84, SSIM: 0.887, IE: 6.67
python3 eval.py --model HJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/baseline_superslomo_adobe.pth
# Evaluation of model trained with paird-GT on Adobe+YouTube-240fps dataset
# PSNR: 33.13, SSIM: 0.889, IE: 6.63
python3 eval.py --model HJSuperSloMo --num_interp 7 --flow_scale 2 --val_file /path/to/SlowFlow/val \
    --resume ./pretrained_models/baseline_superslomo_adobe+youtube.pth
  • Sintel: We use commands similar to SlowFlow, but setting --num_interp 41.

Training and Reproducing Our Results

# CC alone: Fully unsupervised training on SlowFlow and evaluation on SlowFlow
# SlowFlow/val target PSNR: 32.35, SSIM: 0.886, IE: 6.78
python3 -m torch.distributed.launch --nproc_per_node=16 train.py --model CycleHJSuperSloMo \
    --flow_scale 2.0 --batch_size 2 --crop_size 384 384 --print_freq 1 --dataset CycleVideoInterp \
    --step_size 1 --sample_rate 0 --num_interp 7 --val_num_interp 7 --skip_aug --save_freq 20 --start_epoch 0 \
    --train_file /path/to/SlowFlow/train --val_file SlowFlow/val --name unsupervised_slowflow --save /path/to/output 

# --nproc_per_node=16, we use a total of 16 V100 GPUs over two nodes.
# CC + PS: Unsupervised fine-tuning on SlowFlow with a baseline model pre-trained on Adobe+YouTube-240fps.
# SlowFlow/val target PSNR: 33.20, SSIM: 0.891, IE: 6.56
python3 -m torch.distributed.launch --nproc_per_node=16 train.py --model CycleHJSuperSloMo \
    --flow_scale 2.0 --batch_size 2 --crop_size 384 384 --print_freq 1 --dataset CycleVideoInterp \
    --step_size 1 --sample_rate 0 --num_interp 7 --val_num_interp 7 --skip_aug --save_freq 20 --start_epoch 0 \
    --train_file /path/to/SlowFlow/train --val_file /path/to/SlowFlow/val --name finetune_slowflow \
    --save /path/to/output --resume ./pretrained_models/baseline_superslomo_adobe+youtube.pth
# Supervised baseline training on Adobe240-fps and evaluation on SlowFlow
# SlowFlow/val target PSNR: 32.84, SSIM: 0.887, IE: 6.67
python3 -m torch.distributed.launch --nproc_per_node=16 train.py --model HJSuperSloMo \
    --flow_scale 2.0 --batch_size 2 --crop_size 352 352 --print_freq 1 --dataset VideoInterp \
    --num_interp 7 --val_num_interp 7 --skip_aug --save_freq 20 --start_epoch 0 --stride 32 \
    --train_file /path/to/Adobe-240fps/train --val_file /path/to/SlowFlow/val --name supervised_adobe \
    --save /path/to/output

Reference

If you find this implementation useful in your work, please acknowledge it appropriately and cite the paper or code accordingly:

@InProceedings{Reda_2019_ICCV,
author = {Fitsum A Reda and Deqing Sun and Aysegul Dundar and Mohammad Shoeybi and Guilin Liu and Kevin J Shih and Andrew Tao and Jan Kautz and Bryan Catanzaro},
title = {Unsupervised Video Interpolation Using Cycle Consistency},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019},
url={https://nv-adlr.github.io/publication/2019-UnsupervisedVideoInterpolation}
}

We encourage people to contribute to our code base and provide suggestions, point any issues, or solution using merge request, and we hope this repo is useful.

Acknowledgments

Parts of the code were inspired by NVIDIA/flownet2-pytorch, ClementPinard/FlowNetPytorch, and avinashpaliwal/Super-SloMo.

We would also like to thank Huaizu Jiang.

Coding style

  • 4 spaces for indentation rather than tabs
  • 80 character line length
  • PEP8 formatting
Owner
NVIDIA Corporation
NVIDIA Corporation
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition

MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar

51 Nov 11, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
DANA paper supplementary materials

DANA Supplements This repository stores the data, results, and R scripts to generate these reuslts and figures for the corresponding paper Depth Norma

0 Dec 17, 2021
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023