Steer OpenAI's Jukebox with Music Taggers

Related tags

Deep Learningtagbox
Overview

TagBox

Steer OpenAI's Jukebox with Music Taggers!

The closest thing we have to VQGAN+CLIP for music!

Unsupervised Source Separation By Steering Pretrained Music Models

Read the paper here. Submitted to ICASSP 2022.

Abstract

We showcase an unsupervised method that repurposes deep models trained for music generation and music tagging for audio source separation, without any retraining. An audio generation model is conditioned on an input mixture, producing a latent encoding of the audio used to generate audio. This generated audio is fed to a pretrained music tagger that creates source labels. The cross-entropy loss between the tag distribution for the generated audio and a predefined distribution for an isolated source is used to guide gradient ascent in the (unchanging) latent space of the generative model. This system does not update the weights of the generative model or the tagger, and only relies on moving through the generative model's latent space to produce separated sources. We use OpenAI's Jukebox as the pretrained generative model, and we couple it with four kinds of pretrained music taggers (two architectures and two tagging datasets). Experimental results on two source separation datasets, show this approach can produce separation estimates for a wider variety of sources than any tested supervised or unsupervised system. This work points to the vast and heretofore untapped potential of large pretrained music models for audio-to-audio tasks like source separation.

Try it yourself!

Click here to see our Github repository.

Run it yourself Colab notebook here: Open in Colab

Example Output — Separation

MUSDB18 and Slakh2100 examples coming soon!

Audio examples are not displayed on https://github.com/ethman/tagbox, please click here to see the demo page.

TagBox excels in separating prominent melodies from within sparse mixtures.

Wonderwall by Oasis - Vocal Separation

Mixture


TagBox Output

hyperparam setting
fft size(s) 512, 1024, 2048
lr 10.0
steps 200
tagger model(s) fcn, hcnn, musicnn
tagger data MTAT
selected tags All vocal tags

Howl's Moving Castle, Piano & Violin Duet - Violin Separation

Mixture


TagBox Output

hyperparam setting
fft size(s) 512, 1024, 2048
lr 10.0
steps 100
tagger model(s) fcn, hcnn, musicnn
tagger data MTG-Jamendo
selected tags Violin

Smoke On The Water, by Deep Purple - Vocal Separation

Mixture


TagBox Output

hyperparam setting
fft size(s) 512, 1024, 2048
lr 5.0
steps 200
tagger model(s) fcn, hcnn
tagger data MTAT
selected tags All vocal tags

Example Output - Improving Perceptual Output & "Style Transfer"

Adding multiple FFT sizes helps with perceptual quality

Similar to multi-scale spectral losses, when we use masks with multiple FFT sizes we notice that the quality of the output increases.

Mixture


TagBox with fft_size=[1024]

Notice the warbling effects in the following example:


TagBox with fft_size=[1024, 2048]

Those warbling effects are mitigated by using two fft sizes:

These results, however, are not reflected in the SDR evaluation metrics.

"Style Transfer"

Remove the masking step enables Jukebox to generate any audio that will optimize the tag. In some situations, TagBox will pick out the melody and resynthesize it. But it adds lots of artifacts, making it sound like the audio was recorded in a snowstorm.

Mixture


"Style Transfer"

Here, we optimize the "guitar" tag without the mask. Notice that the "All it says to you" melody sounds like a guitar being plucked in a snowstorm:



Cite

If you use this your academic research, please cite the following:

@misc{manilow2021unsupervised,
  title={Unsupervised Source Separation By Steering Pretrained Music Models}, 
  author={Ethan Manilow and Patrick O'Reilly and Prem Seetharaman and Bryan Pardo},
  year={2021},
  eprint={2110.13071},
  archivePrefix={arXiv},
  primaryClass={cs.SD}
}
Owner
Ethan Manilow
PhD in the @interactiveaudiolab
Ethan Manilow
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Code for the paper titled "Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks" (NeurIPS 2021 Spotlight).

Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks This repository contains the code and pre-trained

Hassan Dbouk 7 Dec 05, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022