Detail-Preserving Transformer for Light Field Image Super-Resolution

Related tags

Deep LearningDPT
Overview

DPT

Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 .

Updates

  • 2022.01: Our method is available at the newly-released repository BasicLFSR, an open-source and easy-to-use toolbox for LF image SR.
  • 2022.01: The code is released.

Requirements

  • Python 3.7.7
  • Pytorch=1.5.0
  • torchvision=0.6.0
  • h5py=2.8.0
  • Matlab

Dataset

We use the EPFL, HCInew, HCIold, INRIA and STFgantry datasets for both training and testing. You can download the above dataset from Baidu Drive (key:912V).

Download the visual results

We share the super-resolved results generated by our DPT. Then, researchers can compare their methods to our DPT without performing inference. Results are available at Baidu Drive (key:912V).

Prepare the datasets

To generate the training data,

 Using Matlab to run `GenerateTrainingData.m`

To generate the testing data,

 Using Matlab to run `GenerateTestData.m`

We also provide the processed datasets we used in the paper. The processed datasets are avaliable at Baidu Drive (key:912V).

Train

To perform DPT training, please run

python train.py

Checkpoint will be saved to ./log/.

Test

To evaluate DPT performance, please run

python test.py

The performance of DPT on five datasets will be printed on the screen. The visual result of each scene will be saved in ./Results/. The PSNR and SSIM values of each scene will aslo be saved in ./PSNRSSIM/.

Generate visual results

To generate the visual super-resolved results,

Using Matlab to run `GenerateResultImages.m` 

The '.mat' files in ./Results/ will be converted to '.png' images to ./SRimages/.

To generate the visual gradient results, please run

python generate_visual_gradient_map.py 

Gradient results will be saved to ./GRAimages/.

Citation

If you find this work helpful, please consider citing the following paper:

@article{wang2022detail,
  title={Detail Preserving Transformer for Light Field Image Super-Resolution},
  author={Wang, Shunzhou and Zhou, Tianfei and Lu, Yao and Di, Huijun},
  journal={arXiv preprint arXiv:2201.00346},
  year={2022}
}

Acknowledgements

This code is heavily based on LF-DFNet. We also refer to the codes in VSR-Transformer, COLA-Net, and SPSR. We thank the authors for sharing the codes. We would like to thank Yingqian Wang for his help with LFSR. We would also like to thank Zhengyu Liang for adding our DPT to the repository BasicLFSR.

Contact

If you have any question about this work, feel free to concat with me via [email protected].

VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Code corresponding to The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents

The Introspective Agent: Interdependence of Strategy, Physiology, and Sensing for Embodied Agents This is the code corresponding to The Introspective

0 Jan 10, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
yufan 81 Dec 08, 2022
The easiest tool for extracting radiomics features and training ML models on them.

Simple pipeline for experimenting with radiomics features Installation git clone https://github.com/piotrekwoznicki/ClassyRadiomics.git cd classrad pi

Piotr Woźnicki 17 Aug 04, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021