pytorch implementation of trDesign

Overview

trdesign-pytorch

This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port of the trRosetta network was done by @lucidrains.

Figure 1: trDesign Architecture

Figure 1 of De novo protein design by deep network hallucination (p. 12, Anishchenko et al., CC-BY-ND)

Requirements

Requires python 3.6+

pip install matplotlib numpy torch

Usage (protein design):

  1. Edit src/config.py to set the experiment configuration.
  2. Run python design.py
  3. All results will be saved under results/

Design Configuration Options

  • Sequence length (int)
  • AA_weight (float): how strongly we want the amino acid type composition to be 'natural'
  • RM_AA (str): disable specific amino acid types
  • n_models (int): how many trRosetta model ensembles we want to use during the MCMC loop
  • sequence constraint (str): fix a subset of the sequence residues to specific amino acids
  • target_motif (path): optimize a sequence with a target motif provided as an .npz file
  • MCMC options

Usage (protein structure prediction):

python predict.py example.a3m
# or
python predict.py example.fasta

To get a .pdb from the resulting .npz you need to request the trRosetta package from the original authors.

Then you can run:

python trRosetta.py example.npz example.fasta output.pdb -w /tmp

References

@article {Yang1496,
  author = {Yang, Jianyi and Anishchenko, Ivan and Park, Hahnbeom and Peng, Zhenling and Ovchinnikov, Sergey and Baker, David},
  title = {Improved protein structure prediction using predicted interresidue orientations},
  year = {2020},
  doi = {10.1073/pnas.1914677117},
  URL = {https://www.pnas.org/content/117/3/1496},
  eprint = {https://www.pnas.org/content/117/3/1496.full.pdf},
  journal = {Proceedings of the National Academy of Sciences}
}
@article {Anishchenko2020.07.22.211482,
  author = {Anishchenko, Ivan and Chidyausiku, Tamuka M. and Ovchinnikov, Sergey and Pellock, Samuel J. and Baker, David},
  title = {De novo protein design by deep network hallucination},
  year = {2020},
  doi = {10.1101/2020.07.22.211482},
  URL = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482},
  eprint = {https://www.biorxiv.org/content/early/2020/07/23/2020.07.22.211482.full.pdf},
  journal = {bioRxiv}
}
@article {Tischer2020.11.29.402743,
  author = {Tischer, Doug and Lisanza, Sidney and Wang, Jue and Dong, Runze and Anishchenko, Ivan and Milles, Lukas F. and Ovchinnikov, Sergey and Baker, David},
  title = {Design of proteins presenting discontinuous functional sites using deep learning},
  year = {2020},
  doi = {10.1101/2020.11.29.402743},
  URL = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743},
  eprint = {https://www.biorxiv.org/content/early/2020/11/29/2020.11.29.402743.full.pdf},
  journal = {bioRxiv}
}
Owner
Learn Ventures Inc.
Learn Ventures Inc.
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
This repository contains the code for the paper in EMNLP 2021: "HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression".

HRKD: Hierarchical Relational Knowledge Distillation for Cross-domain Language Model Compression This repository contains the code for the paper in EM

Chenhe Dong 2 Mar 24, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022