Fully Convlutional Neural Networks for state-of-the-art time series classification

Overview

Deep Learning for Time Series Classification

As the simplest type of time series data, univariate time series provides a reasonably good starting point to study the temporal signals. The representation learning and classification research has found many potential application in the fields like finance, industry, and health care. Common similarity measures like Dynamic Time Warping (DTW) or the Euclidean Distance (ED) are decades old. Recent efforts on different feature engineering and distance measures designing give much higher accuracy on the UCR time series classification benchmarks (like BOSS [1],[2], PROP [3] and COTE [4]) but also let to the pitfalls of higher complexity and interpretability.

The exploition on the deep neural networks, especially convolutional neural networks (CNN) for end-to-end time series classification are also under active exploration like multi-channel CNN (MC-CNN) [5] and multi-scale CNN (MCNN) [6]. However, they still need heavy preprocessing and a large set of hyperparameters which would make the model complicated to deploy.

This repository contains three deep neural networks models (MLP, FCN and ResNet) for the pure end-to-end and interpretable time series analytics. These models provide a good baseline for both application for real-world data and future research in deep learning on time series.

Before Start

What is the best approach to classfiy time series? Very hard to say. From the experiments we did, COTE, BOSS are among the best and DL-based appraoch (FCN, ResNet or MCNN) show no significant difference with them. If you prefer white box model, try BOSS first. If you like end-to-end solution, use FCN or even MLP with dropout as your fisrt baseline (FCN also support a certain level of model interpretability as from CAM or grad-CAM).

However, the UCR time series is kind of the 'extremely ideal data'. In a more applicable scenario, highly skewed labels with very non-stationary dynamics and frequent distribution/concept drift occur everywhere. Hopefully we can address these more complex issue with a very neat and effective DL based framework to enable end-2-end solution with good model interpretability , and yeah, we are exactly working on it.

Network Structure

Network Structure Three deep neural network architectures are exploited to provide a fully comprehensive baseline.

Localize the Contributing Region with Class Activation Map

Another benefit of FCN and ResNet with the global average pooling layer is its natural extension, the class activation map (CAM) to interpret the class-specific region in the data [7]. CAM

We can see that the discriminative regions of the time series for the right classes are highlighted. We also highlight the differences in the CAMs for the different labels. The contributing regions for different categories are different. The CAM provides a natural way to find out the contributing region in the raw data for the specific labels. This enables classification-trained convolutional networks to learn to localize without any extra effort. Class activation maps also allow us to visualize the predicted class scores on any given time series, highlighting the discriminative subsequences detected by the convolutional networks. CAM also provide a way to find a possible explanation on how the convolutional networks work for the setting of classification.

Visualize the Filter/Weights

We adopt the Gramian Angular Summation Field (GASF) [8] to visualize the filters/weights in the neural networks. The weights from the second and the last layer in MLP are very similar with clear structures and very little degradation occurring. The weights in the first layer, generally, have the higher values than the following layers. Feature

Classification Results

This table provides the testing (not training) classification error rate on 85 UCR time series data sets. For more experimental settings please refer to our paper.

Please note that the 'best' row is not a reasonable peformance measure. The MPCE score is TODO.

MLP FCN ResNet PROP COTE 1NN-DTW 1NN-BOSS BOSS-VS
50words 0.288 0.321 0.273 0.180 0.191 0.310 0.301 0.367
Adiac 0.248 0.143 0.174 0.353 0.233 0.396 0.220 0.302
ArrowHead 0.177 0.120 0.183 0.103 / 0.337 0.143 0.171
Beef 0.167 0.25 0.233 0.367 0.133 0.367 0.200 0.267
BeetleFly 0.150 0.050 0.200 0.400 / 0.300 0.100 0.000
BirdChicken 0.200 0.050 0.100 0.350 / 0.250 0.000 0.100
Car 0.167 0.083 0.067 / / / / /
CBF 0.14 0 0.006 0.002 0.001 0.003 0 0.001
ChlorineCon 0.128 0.157 0.172 0.360 0.314 0.352 0.340 0.345
CinCECGTorso 0.158 0.187 0.229 0.062 0.064 0.349 0.125 0.130
Coffee 0 0 0 0 0 0 0 0.036
Computers 0.460 0.152 0.176 0.116 0.300 0.296 0.324
CricketX 0.431 0.185 0.179 0.203 0.154 0.246 0.259 0.346
CricketY 0.405 0.208 0.195 0.156 0.167 0.256 0.208 0.328
CricketZ 0.408 0.187 0.187 0.156 0.128 0.246 0.246 0.313
DiatomSizeR 0.036 0.07 0.069 0.059 0.082 0.033 0.046 0.036
DistalPhalanxOutlineAgeGroup 0.173 0.165 0.202 0.223 / 0.208 0.180 0.155
DistalPhalanxOutlineCorrect 0.190 0.188 0.180 0.232 / 0.232 0.208 0.282
DistalPhalanxTW 0.253 0.210 0.260 0.317 / 0.290 0.223 0.253
Earthquakes 0.208 0.199 0.214 0.281 / 0.258 0.186 0.193
ECG200 0.080 0.100 0.130 / / 0.230 0.130 0.180
ECG5000 0.065 0.059 0.069 0.350 / 0.250 0.056 0.110
ECGFiveDays 0.03 0.015 0.045 0.178 0 0.232 0.000 0.000
ElectricDevices 0.420 0.277 0.272 0.277 / 0.399 0.282 0.351
FaceAll 0.115 0.071 0.166 0.152 0.105 0.192 0.210 0.241
FaceFour 0.17 0.068 0.068 0.091 0.091 0.170 0 0.034
FacesUCR 0.185 0.052 0.042 0.063 0.057 0.095 0.042 0.103
fish 0.126 0.029 0.011 0.034 0.029 0.177 0.011 0.017
FordA 0.231 0.094 0.072 0.182 / 0.438 0.083 0.096
FordB 0.371 0.117 0.100 0.265 / 0.406 0.109 0.111
GunPoint 0.067 0 0.007 0.007 0.007 0.093 0 0
Ham 0.286 0.238 0.219 / / 0.533 0.343 0.286
HandOutlines 0.193 0.224 0.139 / / 0.202 0.130 0.152
Haptics 0.539 0.449 0.494 0.584 0.481 0.623 0.536 0.584
Herring 0.313 0.297 0.406 0.079 / 0.469 0.375 0.406
InlineSkate 0.649 0.589 0.635 0.567 0.551 0.616 0.511 0.573
InsectWingbeatSound 0.369 0.598 0.469 / / 0.645 0.479 0.430
ItalyPower 0.034 0.03 0.040 0.039 0.036 0.050 0.053 0.086
LargeKitchenAppliances 0.520 0.104 0.107 0.232 / 0.205 0.280 0.304
Lightning2 0.279 0.197 0.246 0.115 0.164 0.131 0.148 0.262
Lightning7 0.356 0.137 0.164 0.233 0.247 0.274 0.342 0.288
MALLAT 0.064 0.02 0.021 0.050 0.036 0.066 0.058 0.064
Meat 0.067 0.033 0.000 / / 0.067 0.100 0.167
MedicalImages 0.271 0.208 0.228 0.245 0.258 0.263 0.288 0.474
MiddlePhalanxOutlineAgeGroup 0.265 0.232 0.240 0.474 / 0.250 0.218 0.253
MiddlePhalanxOutlineCorrect 0.240 0.205 0.207 0.210 / 0.352 0.255 0.350
MiddlePhalanxTW 0.391 0.388 0.393 0.630 / 0.416 0.373 0.414
MoteStrain 0.131 0.05 0.105 0.114 0.085 0.165 0.073 0.115
NonInvThorax1 0.058 0.039 0.052 0.178 0.093 0.210 0.161 0.169
NonInvThorax2 0.057 0.045 0.049 0.112 0.073 0.135 0.101 0.118
OliveOil 0.60 0.167 0.133 0.133 0.100 0.167 0.100 0.133
OSULeaf 0.43 0.012 0.021 0.194 0.145 0.409 0.012 0.074
PhalangesOutlinesCorrect 0.170 0.174 0.175 / / 0.272 0.217 0.317
Phoneme 0.902 0.655 0.676 / / 0.772 0.733 0.825
Plane 0.019 0 0 / / / /
ProximalPhalanxOutlineAgeGroup 0.176 0.151 0.151 0.117 / 0.195 0.137 0.244
ProximalPhalanxOutlineCorrect 0.113 0.100 0.082 0.172 / 0.216 0.131 0.134
ProximalPhalanxTW 0.203 0.190 0.193 0.244 / 0.263 0.203 0.248
RefrigerationDevices 0.629 0.467 0.472 0.424 / 0.536 0.512 0.488
ScreenType 0.592 0.333 0.293 0.440 / 0.603 0.544 0.464
ShapeletSim 0.517 0.133 0.000 / / 0.350 0.044 0.022
ShapesAll 0.225 0.102 0.088 0.187 / 0.232 0.082 0.188
SmallKitchenAppliances 0.611 0.197 0.203 0.187 / 0.357 0.200 0.221
SonyAIBORobot 0.273 0.032 0.015 0.293 0.146 0.275 0.321 0.265
SonyAIBORobotII 0.161 0.038 0.038 0.124 0.076 0.169 0.098 0.188
StarLightCurves 0.043 0.033 0.025 0.079 0.031 0.093 0.021 0.096
Strawberry 0.033 0.031 0.042 / / 0.060 0.042 0.024
SwedishLeaf 0.107 0.034 0.042 0.085 0.046 0.208 0.072 0.141
Symbols 0.147 0.038 0.128 0.049 0.046 0.050 0.032 0.029
SyntheticControl 0.05 0.01 0.000 0.010 0.000 0.007 0.030 0.040
ToeSegmentation1 0.399 0.031 0.035 0.079 / 0.228 0.048 0.031
ToeSegmentation2 0.254 0.085 0.138 0.085 / 0.162 0.038 0.069
Trace 0.18 0 0 0.010 0.010 0 0 0
TwoLeadECG 0.147 0 0 0.067 0.015 0.096 0.016 0.001
TwoPatterns 0.114 0.103 0 0 0 0 0.004 0.015
UWaveGestureLibraryAll 0.046 0.174 0.132 0.199 0.196 0.272 0.241 0.270
UWaveX 0.232 0.246 0.213 0.283 0.267 0.366 0.313 0.364
UWaveY 0.297 0.275 0.332 0.290 0.265 0.342 0.312 0.336
UWaveZ 0.295 0.271 0.245 0.029 / 0.108 0.059 0.098
wafer 0.004 0.003 0.003 0.003 0.001 0.020 0.001 0.001
Wine 0.204 0.111 0.204 / / 0.426 0.167 0.296
WordSynonyms 0.406 0.42 0.368 0.226 / 0.252 0.345 0.491
Worms 0.657 0.331 0.381 / / 0.536 0.392 0.398
WormsTwoClass 0.403 0.271 0.265 / / 0.337 0.243 0.315
yoga 0.145 0.155 0.142 0.121 0.113 0.164 0.081 0.169
Best 6 27 21 14 10 4 21 9

Dependencies

Keras (Tensorflow backend), Numpy.

Cite

If you find either the codes or the results are helpful to your work, please kindly cite our paper

[Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline] (https://arxiv.org/abs/1611.06455)

[Imaging Time-Series to Improve Classification and Imputation] (https://arxiv.org/abs/1506.00327)

License

This project is licensed under the MIT License.

MIT License

Copyright (c) [2019] [Zhiguang Wang]

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Stephen
Stephen
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores GarcĂ­a 32 Nov 22, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Deep learning for Engineers - Physics Informed Deep Learning

SciANN: Neural Networks for Scientific Computations SciANN is a Keras wrapper for scientific computations and physics-informed deep learning. New to S

SciANN 195 Jan 03, 2023
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

NVIDIA Research Projects 2.9k Dec 28, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022